-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtest_forest_bmsb_imports.py
469 lines (371 loc) · 20.8 KB
/
test_forest_bmsb_imports.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
"""
Copyright (c) 2019 Eric Shook. All rights reserved.
Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.
@author: eshook (Eric Shook, [email protected])
@contributors: <Contribute and add your name here!>
"""
# Load forest
from forest import *
# PyCUDA imports
import pycuda.autoinit
import pycuda.driver as drv
import pycuda.gpuarray as gpuarray
import pycuda.curandom as curandom
from pycuda.tools import DeviceData
from pycuda.compiler import SourceModule
# Constants
matrix_size = 10 # Size of square grid
block_dims = 4 # CUDA block dimensions
grid_dims = (matrix_size + block_dims - 1) // block_dims # CUDA grid dimensions
p_local_always = 1.0 # probability of local diffusion
p_local_never = 0.0
p_non_local_always = 1.0 # probability of non-local diffusion
p_non_local_never = 0.0
p_death_none = 1.0 # probablity a cell dies after diffusion functions
p_death_all = 0.0
growth_rate = 0.5
n_iters = 5 # number of iterations
mu = 0.0
gamma = 1.0
kernel_code = """
#include <curand_kernel.h>
#include <math.h>
extern "C" {
__device__ float get_random_number(curandState* global_state, int thread_id) {
curandState local_state = global_state[thread_id];
float num = curand_uniform(&local_state);
global_state[thread_id] = local_state;
return num;
}
__global__ void test_get_random_number(curandState* global_state, float* grid, int grid_size) {
int x = threadIdx.x + blockIdx.x * blockDim.x; // column element of cell
int y = threadIdx.y + blockIdx.y * blockDim.y; // row element of cell
if (x < grid_size && y < grid_size) {
int thread_id = y * grid_size + x; // thread index
grid[thread_id] = get_random_number(global_state, thread_id);
}
}
__device__ float get_random_angle_in_radians(curandState* global_state, int thread_id) {
float radians = get_random_number(global_state, thread_id) * 2 * M_PI;
return radians;
}
__global__ void test_get_random_angle_in_radians(curandState* global_state, float* grid, int grid_size) {
int x = threadIdx.x + blockIdx.x * blockDim.x; // column element of cell
int y = threadIdx.y + blockIdx.y * blockDim.y; // row element of cell
if (x < grid_size && y < grid_size) {
int thread_id = y * grid_size + x; // thread index
grid[thread_id] = get_random_angle_in_radians(global_state, thread_id);
}
}
__device__ float get_random_cauchy_distance(curandState* global_state, int thread_id, float mu, float gamma) {
float distance = fabsf(mu + gamma * tan(M_PI * (get_random_number(global_state,thread_id) - 0.5)));
return distance;
}
__global__ void test_get_random_cauchy_distance(curandState* global_state, float* grid) {
printf("\\n");
}
__device__ int get_x_coord(int x, float radians, float distance) {
int x_coord = (int) roundf(x + distance * sin(radians));
return x_coord;
}
__global__ void test_get_x_coord(float* grid) {
printf("\\n");
}
__device__ int get_y_coord(int y, float radians, float distance) {
int y_coord = (int) roundf(y + distance * cos(radians));
return y_coord;
}
__global__ void test_get_y_coord(float* grid) {
printf("\\n");
}
__global__ void local_diffuse_always(float* grid_a, float* grid_b, curandState* global_state, int grid_size, float prob, int time) {
int x = threadIdx.x + blockIdx.x * blockDim.x; // column element of cell
int y = threadIdx.y + blockIdx.y * blockDim.y; // row element of cell
// make sure this cell is within bounds of grid
if (x < grid_size && y < grid_size) {
int thread_id = y * grid_size + x; // thread index
grid_b[thread_id] = grid_a[thread_id]; // copy current cell
int edge = (x == 0) || (x == grid_size - 1) || (y == 0) || (y == grid_size - 1);
// edges are ignored as starting points
if (!edge) {
// ignore cell if it is not already populated
if (grid_a[thread_id] > 0.0) {
int count = 0;
int n_iters = grid_a[thread_id];
//__syncthreads();
float num;
int neighbor;
// each agent has a chance to spread
while (count < n_iters) {
num = get_random_number(global_state, thread_id);
// this agent spreads to a neighbor
if (num < prob) {
// hard code a given neighbor for unit testing purposes
neighbor = 4;
grid_b[thread_id] -= 1.0;
switch(neighbor) {
case 1:
grid_b[thread_id - grid_size] += 1.0; // above
//printf("Cell (%d,%d) spread to cell (%d,%d) at time %d\\n", x, y, x, y - 1, time);
break;
case 2:
grid_b[thread_id - grid_size - 1] += 1.0; // above and left
//printf("Cell (%d,%d) spread to cell (%d,%d) at time %d\\n", x, y, x - 1, y - 1, time);
break;
case 3:
grid_b[thread_id - grid_size + 1] += 1.0; // above and right
//printf("Cell (%d,%d) spread to cell (%d,%d) at time %d\\n", x, y, x + 1, y - 1, time);
break;
case 4:
grid_b[thread_id + grid_size] += 1.0; // below
//printf("Cell (%d,%d) spread to cell (%d,%d) at time %d\\n", x, y, x, y + 1, time);
break;
case 5:
grid_b[thread_id + grid_size - 1] += 1.0; // below and left
//printf("Cell (%d,%d) spread to cell (%d,%d) at time %d\\n", x, y, x - 1, y + 1, time);
break;
case 6:
grid_b[thread_id + grid_size + 1] += 1.0; // below and right
//printf("Cell (%d,%d) spread to cell (%d,%d) at time %d\\n", x, y, x + 1, y + 1, time);
break;
case 7:
grid_b[thread_id - 1] += 1.0; // left
//printf("Cell (%d,%d) spread to cell (%d,%d) at time %d\\n", x, y, x - 1, y, time);
break;
case 8:
grid_b[thread_id + 1] += 1.0; // right
//printf("Cell (%d,%d) spread to cell (%d,%d) at time %d\\n", x, y, x + 1, y, time);
break;
default:
//printf("Invalid number encountered\\n");
break;
}
}
count += 1;
}
}
}
}
}
__global__ void local_diffuse_never(float* grid_a, float* grid_b, curandState* global_state, int grid_size, float prob, int time) {
int x = threadIdx.x + blockIdx.x * blockDim.x; // column element of cell
int y = threadIdx.y + blockIdx.y * blockDim.y; // row element of cell
// make sure this cell is within bounds of grid
if (x < grid_size && y < grid_size) {
int thread_id = y * grid_size + x; // thread index
grid_b[thread_id] = grid_a[thread_id]; // copy current cell
int edge = (x == 0) || (x == grid_size - 1) || (y == 0) || (y == grid_size - 1);
// edges are ignored as starting points
if (!edge) {
// ignore cell if it is not already populated
if (grid_a[thread_id] > 0.0) {
int count = 0;
int n_iters = grid_a[thread_id];
//__syncthreads();
float num;
int neighbor;
// each agent has a chance to spread
while (count < n_iters) {
num = get_random_number(global_state, thread_id);
// this agent spreads to a neighbor
if (num < prob) {
// randomly select a neighbor
neighbor = (int) ceilf(get_random_number(global_state, thread_id) * 8.0);
grid_b[thread_id] -= 1.0;
switch(neighbor) {
case 1:
grid_b[thread_id - grid_size] += 1.0; // above
//printf("Cell (%d,%d) spread to cell (%d,%d) at time %d\\n", x, y, x, y - 1, time);
break;
case 2:
grid_b[thread_id - grid_size - 1] += 1.0; // above and left
//printf("Cell (%d,%d) spread to cell (%d,%d) at time %d\\n", x, y, x - 1, y - 1, time);
break;
case 3:
grid_b[thread_id - grid_size + 1] += 1.0; // above and right
//printf("Cell (%d,%d) spread to cell (%d,%d) at time %d\\n", x, y, x + 1, y - 1, time);
break;
case 4:
grid_b[thread_id + grid_size] += 1.0; // below
//printf("Cell (%d,%d) spread to cell (%d,%d) at time %d\\n", x, y, x, y + 1, time);
break;
case 5:
grid_b[thread_id + grid_size - 1] += 1.0; // below and left
//printf("Cell (%d,%d) spread to cell (%d,%d) at time %d\\n", x, y, x - 1, y + 1, time);
break;
case 6:
grid_b[thread_id + grid_size + 1] += 1.0; // below and right
//printf("Cell (%d,%d) spread to cell (%d,%d) at time %d\\n", x, y, x + 1, y + 1, time);
break;
case 7:
grid_b[thread_id - 1] += 1.0; // left
//printf("Cell (%d,%d) spread to cell (%d,%d) at time %d\\n", x, y, x - 1, y, time);
break;
case 8:
grid_b[thread_id + 1] += 1.0; // right
//printf("Cell (%d,%d) spread to cell (%d,%d) at time %d\\n", x, y, x + 1, y, time);
break;
default:
//printf("Invalid number encountered\\n");
break;
}
}
count += 1;
}
}
}
}
}
__global__ void non_local_diffuse_always(float* grid_a, float* grid_b, curandState* global_state, int grid_size, float prob, float mu, float gamma, int time) {
int x = threadIdx.x + blockIdx.x * blockDim.x; // column index of cell
int y = threadIdx.y + blockIdx.y * blockDim.y; // row index of cell
// make sure this cell is within bounds of grid
if (x < grid_size && y < grid_size) {
int thread_id = y * grid_size + x; // thread index
grid_b[thread_id] = grid_a[thread_id]; // copy current cell
// ignore cell if it is not already populated
if (grid_a[thread_id] > 0.0) {
int count = 0;
int n_iters = grid_a[thread_id];
//__syncthreads();
float num;
float radians;
float distance;
int spread_index;
int x_coord;
int y_coord;
// each agent has a chance to spread
while (count < n_iters) {
num = get_random_number(global_state, thread_id);
// this agent spreads to a neighbor
if (num < prob) {
// hard code a cell for unit testing purposes
x_coord = 0;
y_coord = 0;
// make sure chosen cell is in the grid dimensions and is not the current cell
if (x_coord < grid_size && x_coord >= 0 && y_coord < grid_size && y_coord >= 0 && (x_coord != x || y_coord != y)) {
spread_index = y_coord * grid_size + x_coord;
grid_b[thread_id] -= 1;
grid_b[spread_index] += 1;
//printf("Cell (%d,%d) spread to cell (%d,%d) at time %d\\n", x, y, x_coord, y_coord, time);
}
}
count += 1;
}
}
}
}
__global__ void non_local_diffuse_never(float* grid_a, float* grid_b, curandState* global_state, int grid_size, float prob, float mu, float gamma, int time) {
int x = threadIdx.x + blockIdx.x * blockDim.x; // column index of cell
int y = threadIdx.y + blockIdx.y * blockDim.y; // row index of cell
// make sure this cell is within bounds of grid
if (x < grid_size && y < grid_size) {
int thread_id = y * grid_size + x; // thread index
grid_b[thread_id] = grid_a[thread_id]; // copy current cell
// ignore cell if it is not already populated
if (grid_a[thread_id] > 0.0) {
int count = 0;
int n_iters = grid_a[thread_id];
//__syncthreads();
float num;
float radians;
float distance;
int spread_index;
int x_coord;
int y_coord;
// each agent has a chance to spread
while (count < n_iters) {
num = get_random_number(global_state, thread_id);
// this agent spreads to a neighbor
if (num < prob) {
// randomly select a cell
radians = get_random_angle_in_radians(global_state, thread_id);
distance = get_random_cauchy_distance(global_state, thread_id, mu, gamma);
x_coord = get_x_coord(x, radians, distance);
y_coord = get_y_coord(y, radians, distance);
//printf("Radians = %f\\tDistance = %f\\tX = %d\\tY = %d\\tX_coord = %d\\tY_coord = %d\\n", radians, distance, x, y, x_coord, y_coord);
// make sure chosen cell is in the grid dimensions and is not the current cell
if (x_coord < grid_size && x_coord >= 0 && y_coord < grid_size && y_coord >= 0 && (x_coord != x || y_coord != y)) {
spread_index = y_coord * grid_size + x_coord;
grid_b[thread_id] -= 1;
grid_b[spread_index] += 1;
//printf("Cell (%d,%d) spread to cell (%d,%d) at time %d\\n", x, y, x_coord, y_coord, time);
}
}
count += 1;
}
}
}
}
__global__ void survival_of_the_fittest_none_survive(float* grid_a, float* grid_b, curandState* global_state, int grid_size, float* survival_probabilities, int time) {
int x = threadIdx.x + blockIdx.x * blockDim.x; // column index of cell
int y = threadIdx.y + blockIdx.y * blockDim.y; // row index of cell
// make sure this cell is within bounds of grid
if (x < grid_size && y < grid_size) {
int thread_id = y * grid_size + x; // thread index
grid_b[thread_id] = grid_a[thread_id]; // copy current cell
float num;
// ignore cell if it is not already populated
if (grid_a[thread_id] > 0.0) {
num = get_random_number(global_state, thread_id);
// agents in this cell die
if (num < survival_probabilities[thread_id]) {
grid_b[thread_id] = 0.0; // cell dies
//printf("Cell (%d,%d) died at time %d (probability of death was %f)\\n", x, y, time, survival_probabilities[thread_id]);
}
}
}
}
__global__ void survival_of_the_fittest_all_survive(float* grid_a, float* grid_b, curandState* global_state, int grid_size, float* survival_probabilities, int time) {
int x = threadIdx.x + blockIdx.x * blockDim.x; // column index of cell
int y = threadIdx.y + blockIdx.y * blockDim.y; // row index of cell
// make sure this cell is within bounds of grid
if (x < grid_size && y < grid_size) {
int thread_id = y * grid_size + x; // thread index
grid_b[thread_id] = grid_a[thread_id]; // copy current cell
float num;
// ignore cell if it is not already populated
if (grid_a[thread_id] > 0.0) {
num = get_random_number(global_state, thread_id);
// agents in this cell die
if (num < survival_probabilities[thread_id]) {
grid_b[thread_id] = 0.0; // cell dies
//printf("Cell (%d,%d) died at time %d (probability of death was %f)\\n", x, y, time, survival_probabilities[thread_id]);
}
}
}
}
__global__ void population_growth(float* grid_a, float* grid_b, int grid_size, float growth_rate, int time) {
int x = threadIdx.x + blockIdx.x * blockDim.x; // column index of cell
int y = threadIdx.y + blockIdx.y * blockDim.y; // row index of cell
// make sure this cell is within bounds of grid
if (x < grid_size && y < grid_size) {
int thread_id = y * grid_size + x; // thread index
grid_b[thread_id] = grid_a[thread_id]; // copy current cell
//printf("Value at (%d,%d) is %f\\n", x, y, grid_b[thread_id]);
// ignore cell if initial population was 0
if (grid_a[thread_id] > 0.0) {
// growth formula: x(t) = x(t-1) * (1 + growth_rate)^time
int pop = grid_a[thread_id];
int add_pop = (int) truncf(pop * pow((1 + growth_rate), time));
grid_b[thread_id] += add_pop;
//printf("Cell (%d,%d)'s population grew by %d at time %d\\n", x, y, add_pop, time);
}
}
}
} // end extern "C"
"""
mod = SourceModule(kernel_code, no_extern_c = True)
# Get kernel functions
local_always = mod.get_function('local_diffuse_always')
local_never = mod.get_function('local_diffuse_never')
non_local_always = mod.get_function('non_local_diffuse_always')
non_local_never = mod.get_function('non_local_diffuse_never')
survival_none = mod.get_function('survival_of_the_fittest_none_survive')
survival_all = mod.get_function('survival_of_the_fittest_all_survive')
population_growth = mod.get_function('population_growth')
get_random_number = mod.get_function('test_get_random_number')
get_random_angle = mod.get_function('test_get_random_angle_in_radians')
get_random_distance = mod.get_function('test_get_random_cauchy_distance')
get_x = mod.get_function('test_get_x_coord')
get_y = mod.get_function('test_get_y_coord')