-
Notifications
You must be signed in to change notification settings - Fork 151
/
Copy pathtest_fusion.py
61 lines (54 loc) · 2.49 KB
/
test_fusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
from os.path import join
import time
from options.train_options import TrainOptions, TestOptions
from models import create_model
from util.visualizer import Visualizer
import torch
import torchvision
import torchvision.transforms as transforms
from tqdm import trange, tqdm
from fusion_dataset import Fusion_Testing_Dataset
from util import util
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import numpy as np
import multiprocessing
multiprocessing.set_start_method('spawn', True)
torch.backends.cudnn.benchmark = True
if __name__ == '__main__':
opt = TestOptions().parse()
save_img_path = opt.results_img_dir
if os.path.isdir(save_img_path) is False:
print('Create path: {0}'.format(save_img_path))
os.makedirs(save_img_path)
opt.batch_size = 1
dataset = Fusion_Testing_Dataset(opt)
dataset_loader = torch.utils.data.DataLoader(dataset, batch_size=1, num_workers=2)
dataset_size = len(dataset)
print('#Testing images = %d' % dataset_size)
model = create_model(opt)
# model.setup_to_test('coco_finetuned_mask_256')
model.setup_to_test('coco_finetuned_mask_256_ffs')
count_empty = 0
for data_raw in tqdm(dataset_loader, dynamic_ncols=True):
# if os.path.isfile(join(save_img_path, data_raw['file_id'][0] + '.png')) is True:
# continue
data_raw['full_img'][0] = data_raw['full_img'][0].cuda()
if data_raw['empty_box'][0] == 0:
data_raw['cropped_img'][0] = data_raw['cropped_img'][0].cuda()
box_info = data_raw['box_info'][0]
box_info_2x = data_raw['box_info_2x'][0]
box_info_4x = data_raw['box_info_4x'][0]
box_info_8x = data_raw['box_info_8x'][0]
cropped_data = util.get_colorization_data(data_raw['cropped_img'], opt, ab_thresh=0, p=opt.sample_p)
full_img_data = util.get_colorization_data(data_raw['full_img'], opt, ab_thresh=0, p=opt.sample_p)
model.set_input(cropped_data)
model.set_fusion_input(full_img_data, [box_info, box_info_2x, box_info_4x, box_info_8x])
model.forward()
else:
count_empty += 1
full_img_data = util.get_colorization_data(data_raw['full_img'], opt, ab_thresh=0, p=opt.sample_p)
model.set_forward_without_box(full_img_data)
model.save_current_imgs(join(save_img_path, data_raw['file_id'][0] + '.png'))
print('{0} images without bounding boxes'.format(count_empty))