-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathfolder2lmdb.py
360 lines (314 loc) · 15.2 KB
/
folder2lmdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import os
import sys
import six
import string
import argparse
import lmdb
import pickle
import msgpack
import tqdm
from PIL import Image
import torch
import torch.utils.data as data
from utils.image_augmentation import Image_Augmentation
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
from torchvision import transforms, datasets
# This segfaults when imported before torch: https://github.com/apache/arrow/issues/2637
from data.od_dataset_from_file import DatasetFromFile
import cv2
import numpy as np
import shutil
import random
import yaml
from utils.box import wh_to_x2y2
import imgaug.augmenters as iaa
sometimes = lambda aug: iaa.Sometimes(0.5, aug)
seq = iaa.Sequential([
sometimes(iaa.SomeOf((1, 2),
[
#sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))), # convert images into their superpixel representation
iaa.OneOf([
iaa.GaussianBlur((0, 1.0)), # blur images with a sigma between 0 and 3.0
iaa.MedianBlur(k=(3,5)), # blur image using local medians with kernel sizes between 2 and 7
]),
iaa.Sharpen(alpha=(0, 0.1), lightness=(0.9, 1.1)), # sharpen images
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.03*255), per_channel=0.3), # add gaussian noise to images
],
random_order=True
))
])
if torch.__version__> '1.8':
from torchvision.transforms import InterpolationMode
interp = InterpolationMode.BILINEAR
else :
interp = 2
CLASSES = (#'__background__',
'aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat', 'chair',
'cow', 'diningtable', 'dog', 'horse',
'motorbike', 'person', 'pottedplant',
'sheep', 'sofa', 'train', 'tvmonitor')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class ImageFolderLMDB(data.Dataset):
def __init__(self, db_path,batch_size,transform_size = [[352,352]], phase=None,expand_scale=1.5,mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225],has_seg = False, classes_name = CLASSES, seg_num_classes = 0):
self.db_path = db_path
self.env = lmdb.open(db_path, subdir=os.path.isdir(db_path),
readonly=True, lock=False,
readahead=False, meminit=False)
with self.env.begin(write=False) as txn:
self.length = pickle.loads(txn.get(b'__len__'))
self.keys = pickle.loads(txn.get(b'__keys__'))
self.normalize = transforms.Normalize(mean=mean,std=std)
self.mean = mean
self.std = std
self.transform_size = transform_size
self.phase = phase
self.img_aug = Image_Augmentation()
self.batch_size = batch_size
self.count = 0
self.expand_scale = expand_scale
self.has_seg = has_seg
self.classes_name = classes_name
self.seg_num_classes = seg_num_classes
def get_single_image(self,index,expand=False,expand_scale=1.5):
img, target,img2 = None, None, None
env = self.env
with env.begin(write=False) as txn:
byteflow = txn.get(self.keys[index])
unpacked = pickle.loads(byteflow)
#unpacked = pa.deserialize(byteflow)
# load image
imgbuf = unpacked[0]
buf = six.BytesIO()
buf.write(imgbuf[1])
buf.seek(0)
X_str= np.fromstring(buf.read(), dtype=np.uint8)
img = cv2.imdecode(X_str, cv2.IMREAD_COLOR)
# load label
target = unpacked[1]
if self.has_seg:
# load segmentation id
imgbuf = unpacked[2]
buf = six.BytesIO()
buf.write(imgbuf[1])
buf.seek(0)
X_str= np.fromstring(buf.read(), dtype=np.uint8)
img2 = cv2.imdecode(X_str, cv2.IMREAD_COLOR)
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
seg_id = Image.fromarray(img2)
else :
seg_id = None
#if self.phase == 'train':
target2 = torch.Tensor(target)
boxes = target2[...,1:5]
if boxes.shape[0] == 0 :
#print(target2.shape)
boxes2 = torch.zeros(0,4)
labels = torch.zeros(0)
else :
x1 = (boxes[...,0] - boxes[...,2]/2).unsqueeze(1)
y1 = (boxes[...,1] - boxes[...,3]/2).unsqueeze(1)
x2 = (boxes[...,0] + boxes[...,2]/2).unsqueeze(1)
y2 = (boxes[...,1] + boxes[...,3]/2).unsqueeze(1)
boxes2 = torch.cat((x1*img.shape[1],y1*img.shape[0],x2*img.shape[1],y2*img.shape[0]),1)
#if boxes.size(0) :
labels = target2[...,0]
#print(boxes2)
#if labels == 7 :
difficulties = torch.zeros_like(labels)
img = seq(image=img) # done by the library
image = Image.fromarray(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
#print(seg_id)
new_img, new_boxes, new_labels, new_difficulties, new_seg_id = self.img_aug.transform_od(image, boxes2, labels, difficulties,seg_id=seg_id, mean = [0.5, 0.5, 0.5],std = [1, 1, 1],phase = self.phase,expand = expand,expand_scale = self.expand_scale)
array = np.array(new_seg_id)
maps = list()
if self.has_seg:
for c in range(1,self.seg_num_classes+1):
maps.append(Image.fromarray(array==c))
old_dims = torch.FloatTensor([new_img.width, new_img.height, new_img.width, new_img.height]).unsqueeze(0)
new_boxes2 = new_boxes / old_dims # percent coordinates
w = (new_boxes2[...,2] - new_boxes2[...,0])
h = (new_boxes2[...,3] - new_boxes2[...,1])
x = (new_boxes2[...,0] + w/2).unsqueeze(1)
y = (new_boxes2[...,1] + h/2).unsqueeze(1)
#print(x.shape,y.shape,w.shape,h.shape,new_boxes.shape)
new_boxes2 = torch.cat((x,y,w.unsqueeze(1),h.unsqueeze(1)),1)
new_target = torch.cat((new_labels.unsqueeze(1),new_boxes2),1)
return (new_img,new_target,maps)
def __getitem__(self, index):
#print(index)
if type(index) == list:
group = []
s = len(index)
for idx in index:
img,tar,seg_id = self.get_single_image(idx,s==1)
group.append([img,tar,seg_id])
if s == 1 :
#self.show_image(img,tar[...,1:5],tar[...,0],convert=True)
return group[0][0],group[0][1],1,group[0][2]
else :
b = self.img_aug.Mosaic(group,[1000,1000])
#self.show_image(b[0],b[1][...,1:5].clone(),b[1][...,0].clone(),convert=True)
return b[0],b[1],len(index)
else:
img,tar,_ = self.get_single_image(index)
return img,tar,1
def show_image(self,image,boxes=None,labels=None,convert=False,seg_id = False,gray_img_only = False,resize = None):
if gray_img_only == True :
#print(image)
cv_img = np.array(image.convert('L'))
print(cv_img.shape)
if resize!=None :
cv_img = cv2.resize(cv_img, (resize[0], resize[1]), interpolation=cv2.INTER_AREA)
cv2.namedWindow('frame',cv2.WINDOW_NORMAL)
cv2.resizeWindow('frame', 640, 480)
cv2.imshow('frame', cv_img)
key = cv2.waitKey(3)
else :
cv_img = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
seg_id = (np.asarray(seg_id)!=0)*0.5
#print(seg_id)
#print(cv_img.shape,seg_id.shape)
#cv_img = cv2.bitwise_and(cv_img,cv_img,mask = seg_id)
cv_img[...,0] = cv_img[...,0]*seg_id + cv_img[...,0]*(seg_id==0)
cv_img[...,2] = cv_img[...,2]*seg_id + cv_img[...,2]*(seg_id==0)
for idx,box in enumerate(boxes) :
if convert :
#print(box,cv_img.shape)
wh_to_x2y2(box)
#print(box,cv_img.shape)
box[0],box[2] = box[0]*cv_img.shape[1],box[2]*cv_img.shape[1]
box[1],box[3] = box[1]*cv_img.shape[0],box[3]*cv_img.shape[0]
cv2.rectangle(cv_img, (int(box[0]),int(box[1])), (int(box[2]),int(box[3])), (0,255,0), 2)
text=self.classes_name[int(labels[idx])].lower()
cv2.putText(cv_img, text, (int(box[0]),int(box[1]-5)), cv2.FONT_HERSHEY_SIMPLEX,0.5, (0, 255, 255), 1, cv2.LINE_AA)
cv2.namedWindow('frame',cv2.WINDOW_NORMAL)
cv2.resizeWindow('frame', 480, 480)
cv2.imshow('frame', cv_img)
key = cv2.waitKey(0)
#cv2.imwrite('images//frame%04d.jpg'%self.count, cv_img)
def __len__(self):
return self.length
def __repr__(self):
return self.__class__.__name__ + ' (' + self.db_path + ')'
def set_transform(self,transform):
self.transform = transform
def collate_fn(self, batch):
images = list()
labels = list()
seg_maps = list()
random_size = random.choice(self.transform_size)
seg_random_size = [int(number / 16) for number in random_size]
#print(seg_random_size)
self.transform = transforms.Compose([
transforms.Resize(size=random_size, interpolation=interp),
transforms.ToTensor(),
self.normalize,
])
self.transform_seg = transforms.Compose([
transforms.Resize(size=seg_random_size, interpolation=interp),
transforms.ToTensor(),
])
count = 0
for b in batch:
if self.has_seg:
maps = torch.zeros(seg_random_size[0],seg_random_size[1],self.seg_num_classes)
for i,m in enumerate(b[3]):
cv_img = np.array(m.convert('L'))
cv_img = cv2.resize(cv_img, (seg_random_size[0], seg_random_size[1]), interpolation=cv2.INTER_AREA)
maps[...,i] = torch.Tensor(cv_img)/255.0
#self.show_image(m,gray_img_only=True,resize=seg_random_size)
seg_maps.append(maps)
images.append(self.transform(b[0]))
labels.append(b[1])
count = b[2] + count
images = torch.stack(images, dim=0)
if self.phase == 'train':
if self.has_seg:
seg_maps = torch.stack(seg_maps, dim=0)
return images, labels, count, seg_maps
else:
return images, labels, count, None
else :
return images, labels
def raw_reader(path):
with open(path, 'rb') as f:
bin_data = f.read()
return bin_data
def folder2lmdb(dataset_path, write_frequency=5000):
directory = os.path.expanduser(dataset_path)
print("Loading dataset from %s" % directory)
with open(dataset_path, 'r') as stream:
data = yaml.load(stream)
print(data)
classes_name = data["classes"]["map"]
classes_name.insert(0, 'background')
ori_classes_name = data["classes"]["original"]
trainval_dataset_path = data["trainval_dataset_path"]
test_dataset_path = data["test_dataset_path"]
ext_img = data["extention_names"]["image"]
ext_anno = data["extention_names"]["annotation"]
segmentation_enable = data["segmentation_enable"]
if segmentation_enable:
ext_seg = data["extention_names"]["segmentation"]
#print(classes_name)
if segmentation_enable:
trainval_dataset = \
DatasetFromFile(trainval_dataset_path['imgs'],trainval_dataset_path['annos'],trainval_dataset_path['segs'],trainval_dataset_path['lists'],classes_name, \
dataset_name=trainval_dataset_path['name'],phase = 'test',has_seg = segmentation_enable,difficultie=False,ext_img=ext_img,ext_anno=ext_anno,ext_seg=ext_seg,ori_classes_name=ori_classes_name)
test_dataset = \
DatasetFromFile(test_dataset_path['imgs'],test_dataset_path['annos'],test_dataset_path['segs'],test_dataset_path['lists'],classes_name, \
dataset_name=test_dataset_path['name'],phase = 'test',has_seg = segmentation_enable,difficultie=False,ext_img=ext_img,ext_anno=ext_anno,ext_seg=ext_seg,ori_classes_name=ori_classes_name)
else :
trainval_dataset = \
DatasetFromFile(trainval_dataset_path['imgs'],trainval_dataset_path['annos'],None,trainval_dataset_path['lists'],classes_name, \
dataset_name=trainval_dataset_path['name'],phase = 'test',has_seg = segmentation_enable,difficultie=False,ext_img=ext_img,ext_anno=ext_anno,ori_classes_name=ori_classes_name)
test_dataset = \
DatasetFromFile(test_dataset_path['imgs'],test_dataset_path['annos'],None,test_dataset_path['lists'],classes_name, \
dataset_name=test_dataset_path['name'],phase = 'test',has_seg = segmentation_enable,difficultie=False,ext_img=ext_img,ext_anno=ext_anno,ori_classes_name=ori_classes_name)
outpath = trainval_dataset_path['lmdb'],test_dataset_path['lmdb']
total_set = trainval_dataset,test_dataset
for i in range(len(total_set)) :
data_loader = DataLoader(total_set[i], num_workers=4, collate_fn=lambda x: x)
lmdb_path = os.path.expanduser(outpath[i])
if os.path.exists(lmdb_path) and os.path.isdir(lmdb_path):
shutil.rmtree(lmdb_path)
#print(lmdb_path)
os.mkdir(lmdb_path)
print("Generate LMDB to %s" % lmdb_path)
db = lmdb.open(lmdb_path, subdir=True,
map_size=1099511627776 * 2, readonly=False,
meminit=False, map_async=True)
txn = db.begin(write=True)
sum = 0
for idx, data in enumerate(data_loader):
if segmentation_enable:
image,label,seg = data[0][0],data[0][1],data[0][2]
txn.put(u'{}'.format(idx).encode('ascii'), pickle.dumps((image, label, seg)))
else:
image,label = data[0][0],data[0][1]
txn.put(u'{}'.format(idx).encode('ascii'), pickle.dumps((image, label)))
sum += len(label)
#txn.put(u'{}'.format(idx).encode('ascii'), pa.serialize((image, label)).to_buffer())
if idx % write_frequency == 0:
print("[%d/%d]" % (idx, len(data_loader)))
txn.commit()
txn = db.begin(write=True)
print('total box : %d'%sum)
# finish iterating through dataset
txn.commit()
keys = [u'{}'.format(k).encode('ascii') for k in range(idx + 1)]
with db.begin(write=True) as txn:
txn.put(b'__keys__', pickle.dumps(keys))
txn.put(b'__len__', pickle.dumps(len(keys)))
#txn.put(b'__keys__', pa.serialize(keys).to_buffer())
#txn.put(b'__len__', pa.serialize(len(keys)).to_buffer())
print("Flushing database ...")
db.sync()
db.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-d", "--dataset", help="Path to original image dataset folder", default = 'data/voc_data.yaml')
args = parser.parse_args()
folder2lmdb(args.dataset)