diff --git a/docs/everest/cli.rst b/docs/everest/cli.rst index bdd699e1db5..8229da37c56 100644 --- a/docs/everest/cli.rst +++ b/docs/everest/cli.rst @@ -52,78 +52,7 @@ Using again the command `everest monitor config_file.yml`, will reattach to the Everest `export` ================ -.. argparse:: - :module: everest.bin.everexport_script - :func: _build_args_parser - :prog: everexport_entry - - -The everest export functionality is configured in the export section of the config file. -The following represents an export section a config file set with default values. - -.. code-block:: yaml - - export: - skip_export: False - keywords: - batches: - discard_gradient: True # Export only non-gradient simulations - discard_rejected: True # Export only increased merit simulations - csv_output_filepath: everest_output_folder/config_file.csv - -When the export command `everest export config_file.yml` is run with a config file that does not define an export section default values will be used, a `config_file.csv` file in the Everest output folder will be created. -By default Everest exports only non-gradient with increased merit simulations when no config section is defined in the config file. -The file will contain optimization data for all the optimization batches and the available eclipse keywords (if a data file is available) for only the non-gradient simulations and the simulations that increase merit. - -**Examples** - -* Export only non-gradient simulation using the following export section in the config file - -.. code-block:: yaml - - export: - discard_rejected: False - -* Export only increased merit simulation using the following export section in the config file - -.. code-block:: yaml - - export: - discard_gradient: False - - -* Export only a list of available batches even if they are gradient batches and if no export section is defined. - - everest export config_file.yml --batches 0 2 4 - -The command above is equivalent to having the following export section defined in the config file `config_file.yml`. - -.. code-block:: yaml - - export: - batches: [0, 2, 4] - -* Exporting just a specific list of eclipse keywords requires the following export section defined in the config file. - -.. code-block:: yaml - - export: - keywords: ['FOIP', 'FOPT'] - -* Skip export by adding the following section in the config file. - -.. code-block:: yaml - - export: - skip_export: True - -* Export will also be skipped if an empty list of batches is defined in the export section. - -.. code-block:: yaml - - export: - batches: [] - +The everest export has been removed. All data is now always exported to the optimization output directory. ============== Everest `lint` diff --git a/src/ert/run_models/everest_run_model.py b/src/ert/run_models/everest_run_model.py index 43f41f664f4..753c8e192ed 100644 --- a/src/ert/run_models/everest_run_model.py +++ b/src/ert/run_models/everest_run_model.py @@ -9,21 +9,18 @@ import shutil from collections import defaultdict from collections.abc import Callable -from dataclasses import dataclass from enum import IntEnum from pathlib import Path from types import TracebackType from typing import TYPE_CHECKING, Any, Protocol import numpy as np -import seba_sqlite.sqlite_storage from numpy import float64 from numpy._typing import NDArray from ropt.enums import EventType, OptimizerExitCode from ropt.evaluator import EvaluatorContext, EvaluatorResult from ropt.plan import BasicOptimizer from ropt.plan import Event as OptimizerEvent -from seba_sqlite import SqliteStorage from typing_extensions import TypedDict from _ert.events import EESnapshot, EESnapshotUpdate, Event @@ -32,6 +29,7 @@ from ert.runpaths import Runpaths from ert.storage import open_storage from everest.config import ControlConfig, ControlVariableGuessListConfig, EverestConfig +from everest.everest_storage import EverestStorage, OptimalResult from everest.optimizer.everest2ropt import everest2ropt from everest.simulator.everest_to_ert import everest_to_ert_config from everest.strings import EVEREST @@ -70,24 +68,6 @@ class OptimizerCallback(Protocol): def __call__(self) -> str | None: ... -@dataclass -class OptimalResult: - batch: int - controls: list[Any] - total_objective: float - - @staticmethod - def from_seba_optimal_result( - o: seba_sqlite.sqlite_storage.OptimalResult | None = None, - ) -> OptimalResult | None: - if o is None: - return None - - return OptimalResult( - batch=o.batch, controls=o.controls, total_objective=o.total_objective - ) - - class EverestExitCode(IntEnum): COMPLETED = 1 TOO_FEW_REALIZATIONS = 2 @@ -206,23 +186,16 @@ def run_experiment( # Initialize the ropt optimizer: optimizer = self._create_optimizer() - # The SqliteStorage object is used to store optimization results from - # Seba in an sqlite database. It reacts directly to events emitted by - # Seba and is not called by Everest directly. The stored results are - # accessed by Everest via separate SebaSnapshot objects. - # This mechanism is outdated and not supported by the ropt package. It - # is retained for now via the seba_sqlite package. - seba_storage = SqliteStorage( # type: ignore - optimizer, self._everest_config.optimization_output_dir + self.ever_storage = EverestStorage( + output_dir=Path(self._everest_config.optimization_output_dir), ) + self.ever_storage.observe_optimizer(optimizer) # Run the optimization: optimizer_exit_code = optimizer.run().exit_code # Extract the best result from the storage. - self._result = OptimalResult.from_seba_optimal_result( - seba_storage.get_optimal_result() # type: ignore - ) + self._result = self.ever_storage.get_optimal_result() if self._exit_code is None: match optimizer_exit_code: diff --git a/src/everest/__init__.py b/src/everest/__init__.py index a3d41fdd7d4..fe65ee531f6 100644 --- a/src/everest/__init__.py +++ b/src/everest/__init__.py @@ -21,16 +21,10 @@ __version__ = "0.0.0" from everest import detached, jobs, templates, util -from everest.bin.utils import export_to_csv, export_with_progress -from everest.export import MetaDataColumnNames, filter_data __author__ = "Equinor ASA and TNO" __all__ = [ - "MetaDataColumnNames", "detached", - "export_to_csv", - "export_with_progress", - "filter_data", "jobs", "load", "templates", diff --git a/src/everest/api/everest_data_api.py b/src/everest/api/everest_data_api.py index d3b3d804fab..d6b47519bca 100644 --- a/src/everest/api/everest_data_api.py +++ b/src/everest/api/everest_data_api.py @@ -1,46 +1,69 @@ -from collections import OrderedDict +import os +from pathlib import Path +import polars import polars as pl -from seba_sqlite.snapshot import SebaSnapshot +from ropt.enums import ConstraintType from ert.storage import open_storage -from everest.config import EverestConfig, ServerConfig -from everest.detached import ServerStatus, everserver_status +from everest.config import EverestConfig +from everest.everest_storage import EverestStorage class EverestDataAPI: def __init__(self, config: EverestConfig, filter_out_gradient=True): self._config = config output_folder = config.optimization_output_dir - self._snapshot = SebaSnapshot(output_folder).get_snapshot(filter_out_gradient) + self._ever_storage = EverestStorage(Path(output_folder)) + + if os.path.exists(output_folder): + self._ever_storage.read_from_output_dir() @property def batches(self): - batch_ids = list({opt.batch_id for opt in self._snapshot.optimization_data}) - return sorted(batch_ids) + return sorted( + b.batch_id + for b in self._ever_storage.data.batches + if b.batch_objectives is not None + ) @property def accepted_batches(self): - batch_ids = list( - {opt.batch_id for opt in self._snapshot.optimization_data if opt.merit_flag} + return sorted( + b.batch_id for b in self._ever_storage.data.batches if b.is_improvement ) - return sorted(batch_ids) @property def objective_function_names(self): - return [fnc.name for fnc in self._snapshot.metadata.objectives.values()] + return sorted( + self._ever_storage.data.objective_functions["objective_name"] + .unique() + .to_list() + ) @property def output_constraint_names(self): - return [fnc.name for fnc in self._snapshot.metadata.constraints.values()] + return ( + sorted( + self._ever_storage.data.nonlinear_constraints["constraint_name"] + .unique() + .to_list() + ) + if self._ever_storage.data.nonlinear_constraints is not None + else [] + ) def input_constraint(self, control): - controls = [ - con - for con in self._snapshot.metadata.controls.values() - if con.name == control - ] - return {"min": controls[0].min_value, "max": controls[0].max_value} + # Note: This function is weird, its existence is probably not well-justified + # consider removing! + initial_values = self._ever_storage.data.controls + control_spec = initial_values.filter( + pl.col("control_name") == control + ).to_dicts()[0] + return { + "min": control_spec.get("lower_bounds"), + "max": control_spec.get("upper_bounds"), + } def output_constraint(self, constraint): """ @@ -50,106 +73,155 @@ def output_constraint(self, constraint): "right_hand_side" is a constant real number that indicates the constraint bound/target. """ - constraints = [ - con - for con in self._snapshot.metadata.constraints.values() - if con.name == constraint - ] + + constraint_dict = self._ever_storage.data.nonlinear_constraints.filter( + polars.col("constraint_name") == constraint + ).to_dicts()[0] return { - "type": constraints[0].constraint_type, - "right_hand_side": constraints[0].rhs_value, + "type": ConstraintType(constraint_dict["constraint_type"]).name.lower(), + "right_hand_side": constraint_dict["constraint_rhs_value"], } @property def realizations(self): - return list( - OrderedDict.fromkeys( - int(sim.realization) for sim in self._snapshot.simulation_data - ) + return sorted( + self._ever_storage.data.batches[0] + .realization_objectives["realization"] + .unique() + .to_list() ) @property def simulations(self): - return list( - OrderedDict.fromkeys( - [int(sim.simulation) for sim in self._snapshot.simulation_data] - ) + return sorted( + self._ever_storage.data.batches[0] + .realization_objectives["simulation_id"] + .unique() + .to_list() ) @property def control_names(self): - return [con.name for con in self._snapshot.metadata.controls.values()] + return sorted( + self._ever_storage.data.controls["control_name"].unique().to_list() + ) @property def control_values(self): - controls = [con.name for con in self._snapshot.metadata.controls.values()] - return [ - {"control": con, "batch": sim.batch, "value": sim.controls[con]} - for sim in self._snapshot.simulation_data - for con in controls - if con in sim.controls - ] + all_control_names = self._ever_storage.data.controls["control_name"].to_list() + new = [] + for batch in self._ever_storage.data.batches: + if batch.realization_controls is None: + continue + + for controls_dict in batch.realization_controls.to_dicts(): + for name in all_control_names: + new.append( + { + "control": name, + "batch": batch.batch_id, + "value": controls_dict[name], + } + ) + + return new @property def objective_values(self): - return [ - { - "function": objective.name, - "batch": sim.batch, - "realization": sim.realization, - "simulation": sim.simulation, - "value": sim.objectives[objective.name], - "weight": objective.weight, - "norm": objective.normalization, - } - for sim in self._snapshot.simulation_data - for objective in self._snapshot.metadata.objectives.values() - if objective.name in sim.objectives - ] + obj_values = [] + for b in self._ever_storage.data.batches: + if b.realization_objectives is None: + continue + + for ( + geo_realization, + simulation_id, + ), df in b.realization_objectives.sort( + ["realization", "simulation_id"] + ).group_by(["realization", "simulation_id"], maintain_order=True): + for obj_dict in self._ever_storage.data.objective_functions.sort( + ["objective_name"] + ).to_dicts(): + obj_name = obj_dict["objective_name"] + obj_values.append( + { + "batch": int(b.batch_id), + "realization": int(geo_realization), + "simulation": int(simulation_id), + "function": obj_name, + "norm": float(obj_dict["normalization"]), + "value": float(df[obj_name].item()), + "weight": float(obj_dict["weight"]), + } + ) + + return obj_values @property def single_objective_values(self): - single_obj = [ - { - "batch": optimization_el.batch_id, - "objective": optimization_el.objective_value, - "accepted": optimization_el.merit_flag, - } - for optimization_el in self._snapshot.optimization_data + batch_datas = polars.concat( + [ + b.batch_objectives.select( + c for c in b.batch_objectives.columns if c != "merit_value" + ).with_columns( + polars.lit(1 if b.is_improvement else 0).alias("accepted") + ) + for b in self._ever_storage.data.batches + if b.realization_controls is not None + ] + ) + objectives = self._ever_storage.data.objective_functions + objective_names = objectives["objective_name"].unique().to_list() + + for o in objectives.to_dicts(): + batch_datas = batch_datas.with_columns( + polars.col(o["objective_name"]) * o["weight"] * o["normalization"] + ) + + columns = [ + "batch", + "objective", + "accepted", + *(objective_names if len(objective_names) > 1 else []), ] - metadata = { - func.name: {"weight": func.weight, "norm": func.normalization} - for func in self._snapshot.metadata.functions.values() - if func.function_type == func.FUNCTION_OBJECTIVE_TYPE - } - if len(metadata) == 1: - return single_obj - objectives = [] - for name, values in self._snapshot.expected_objectives.items(): - for idx, val in enumerate(values): - factor = metadata[name]["weight"] * metadata[name]["norm"] - if len(objectives) > idx: - objectives[idx].update({name: val * factor}) - else: - objectives.append({name: val * factor}) - for idx, obj in enumerate(single_obj): - obj.update(objectives[idx]) - - return single_obj + + return ( + batch_datas.rename( + {"total_objective_value": "objective", "batch_id": "batch"} + ) + .select(columns) + .to_dicts() + ) @property def gradient_values(self): - return [ - { - "batch": optimization_el.batch_id, - "function": function, - "control": control, - "value": value, - } - for optimization_el in self._snapshot.optimization_data - for function, info in optimization_el.gradient_info.items() - for control, value in info.items() + all_batch_data = [ + b.batch_objective_gradient + for b in self._ever_storage.data.batches + if b.batch_objective_gradient is not None and b.is_improvement + ] + if not all_batch_data: + return [] + + all_info = polars.concat(all_batch_data) + objective_columns = [ + c + for c in all_info.drop(["batch_id", "control_name"]).columns + if not c.endswith(".total") ] + return ( + all_info.select("batch_id", "control_name", *objective_columns) + .unpivot( + on=objective_columns, + index=["batch_id", "control_name"], + variable_name="function", + value_name="value", + ) + .rename({"control_name": "control", "batch_id": "batch"}) + .sort(by=["batch", "control"]) + .select(["batch", "function", "control", "value"]) + .to_dicts() + ) def summary_values(self, batches=None, keys=None): if batches is None: @@ -180,16 +252,13 @@ def summary_values(self, batches=None, keys=None): summary = summary.with_columns( pl.Series("batch", [batch_id] * summary.shape[0]) ) - # The realization ID as defined by Everest must be - # retrieved via the seba snapshot. - realization_map = { - sim.simulation: sim.realization - for sim in self._snapshot.simulation_data - if sim.batch == batch_id - } + + realization_map = ( + self._ever_storage.data.simulation_to_geo_realization_map(batch_id) + ) realizations = pl.Series( "realization", - [realization_map.get(str(sim)) for sim in summary["simulation"]], + [realization_map.get(int(sim)) for sim in summary["simulation"]], ) realizations = realizations.cast(pl.Int64, strict=False) summary = summary.with_columns(realizations) @@ -202,11 +271,176 @@ def summary_values(self, batches=None, keys=None): def output_folder(self): return self._config.output_dir + def export_dataframes( + self, + ) -> tuple[polars.DataFrame, polars.DataFrame, polars.DataFrame]: + batch_dfs_to_join = {} + realization_dfs_to_join = {} + perturbation_dfs_to_join = {} + + batch_ids = [b.batch_id for b in self._ever_storage.data.batches] + all_controls = self._ever_storage.data.controls["control_name"].to_list() + + def _try_append_df( + batch_id: int, + df: polars.DataFrame | None, + target: dict[str, list[polars.DataFrame]], + ): + if df is not None: + if batch_id not in target: + target[batch.batch_id] = [] + + target[batch_id].append(df) + + def try_append_batch_dfs(batch_id: int, *dfs: polars.DataFrame): + for df_ in dfs: + _try_append_df(batch_id, df_, batch_dfs_to_join) + + def try_append_realization_dfs(batch_id: int, *dfs: polars.DataFrame): + for df_ in dfs: + _try_append_df(batch_id, df_, realization_dfs_to_join) + + def try_append_perturbation_dfs(batch_id: int, *dfs: polars.DataFrame): + for df_ in dfs: + _try_append_df(batch_id, df_, perturbation_dfs_to_join) + + def pivot_gradient(df: polars.DataFrame) -> polars.DataFrame: + pivoted_ = df.pivot(on="control_name", index="batch_id", separator=" wrt ") + return pivoted_.rename( + { + col: f"grad({col})" + for col in pivoted_.columns + if col != "batch_id" and col not in all_controls + } + ) + + for batch in self._ever_storage.data.batches: + try_append_perturbation_dfs( + batch.batch_id, + batch.perturbation_objectives, + batch.perturbation_constraints, + ) + + try_append_realization_dfs( + batch.batch_id, + batch.realization_objectives, + batch.realization_controls, + batch.realization_constraints, + ) + + if batch.batch_objective_gradient is not None: + try_append_batch_dfs( + batch.batch_id, pivot_gradient(batch.batch_objective_gradient) + ) + + if batch.batch_constraint_gradient is not None: + try_append_batch_dfs( + batch.batch_id, + pivot_gradient(batch.batch_constraint_gradient), + ) + + try_append_batch_dfs( + batch.batch_id, batch.batch_objectives, batch.batch_constraints + ) + + def _join_by_batch( + dfs: dict[int, list[polars.DataFrame]], on: list[str] + ) -> list[polars.DataFrame]: + """ + Creates one dataframe per batch, with one column per input/output, + including control, objective, constraint, gradient value. + """ + dfs_to_concat_ = [] + for batch_id in batch_ids: + if batch_id not in dfs: + continue + + batch_df_ = dfs[batch_id][0] + for bdf_ in dfs[batch_id][1:]: + if set(all_controls).issubset(set(bdf_.columns)) and set( + all_controls + ).issubset(set(batch_df_.columns)): + bdf_ = bdf_.drop(all_controls) + + batch_df_ = batch_df_.join( + bdf_, + on=on, + ) + + dfs_to_concat_.append(batch_df_) + + return dfs_to_concat_ + + batch_dfs_to_concat = _join_by_batch(batch_dfs_to_join, on=["batch_id"]) + batch_df = polars.concat(batch_dfs_to_concat, how="diagonal") + + realization_dfs_to_concat = _join_by_batch( + realization_dfs_to_join, on=["batch_id", "realization", "simulation_id"] + ) + realization_df = polars.concat(realization_dfs_to_concat, how="diagonal") + + perturbation_dfs_to_concat = _join_by_batch( + perturbation_dfs_to_join, on=["batch_id", "realization", "perturbation"] + ) + perturbation_df = polars.concat(perturbation_dfs_to_concat, how="diagonal") + + pert_real_df = polars.concat([realization_df, perturbation_df], how="diagonal") + + pert_real_df = pert_real_df.select( + "batch_id", + "realization", + "perturbation", + *list( + set(pert_real_df.columns) - {"batch_id", "realization", "perturbation"} + ), + ) + + # Avoid name collisions when joining with simulations + batch_df_renamed = batch_df.rename( + { + col: f"batch_{col}" + for col in batch_df.columns + if col != "batch_id" and not col.startswith("grad") + } + ) + combined_df = pert_real_df.join( + batch_df_renamed, on="batch_id", how="full", coalesce=True + ) + + def _sort_df(df: polars.DataFrame, index: list[str]): + sorted_cols = index + sorted(set(df.columns) - set(index)) + df_ = df.select(sorted_cols).sort(by=index) + return df_ + + return ( + _sort_df( + combined_df, + ["batch_id", "realization", "simulation_id", "perturbation"], + ), + _sort_df( + pert_real_df, + [ + "batch_id", + "realization", + "perturbation", + "simulation_id", + ], + ), + _sort_df(batch_df, ["batch_id", "total_objective_value"]), + ) + @property def everest_csv(self): - status_path = ServerConfig.get_everserver_status_path(self._config.output_dir) - state = everserver_status(status_path) - if state["status"] == ServerStatus.completed: - return self._config.export_path - else: - return None + export_filename = ( + self._config.export.csv_output_filepath + if self._config.export is not None + else f"{self._config.config_file}.csv" + ) + + full_path = os.path.join(self.output_folder, export_filename) + + if not os.path.exists(full_path): + combined_df, _, _ = self.export_dataframes() + combined_df.write_csv(full_path) + + return os.path.join(self.output_folder, export_filename) diff --git a/src/everest/bin/config_branch_script.py b/src/everest/bin/config_branch_script.py index 954241a84c2..e47a1aa1f08 100644 --- a/src/everest/bin/config_branch_script.py +++ b/src/everest/bin/config_branch_script.py @@ -1,15 +1,14 @@ import argparse from copy import deepcopy as copy from functools import partial -from os.path import exists, join +from pathlib import Path from typing import Any from ruamel.yaml import YAML -from seba_sqlite.database import Database as seba_db -from seba_sqlite.snapshot import SebaSnapshot from everest.config import EverestConfig from everest.config_file_loader import load_yaml +from everest.everest_storage import EverestStorage def _yaml_config(file_path: str, parser) -> tuple[str, dict[str, Any] | None]: @@ -45,10 +44,21 @@ def _build_args_parser(): def opt_controls_by_batch(optimization_dir, batch): - snapshot = SebaSnapshot(optimization_dir) - for opt_data in snapshot.get_optimization_data(): - if opt_data.batch_id == batch: - return opt_data.controls + storage = EverestStorage(Path(optimization_dir)) + storage.read_from_output_dir() + + control_names = storage.data.controls["control_name"] + batch_data = next((b for b in storage.data.batches if b.batch_id == batch), None) + + if batch_data: + # It is currently assumed that the batch provided is not a perturbation-only + # batch. + # All geo-realizations should have the same unperturbed control values per batch + # hence it does not matter which realization we select the controls for + return batch_data.realization_controls.select( + control_names.to_list() + ).to_dicts()[0] + return None @@ -91,10 +101,6 @@ def config_branch_entry(args=None): options = parser.parse_args(args) optimization_dir, yml_config = options.input_config - db_path = join(optimization_dir, seba_db.FILENAME) - if not exists(db_path): - parser.error(f"Optimization source {db_path} not found") - opt_controls = opt_controls_by_batch(optimization_dir, options.batch) if opt_controls is None: parser.error(f"Batch {options.batch} not present in optimization data") diff --git a/src/everest/bin/everexport_script.py b/src/everest/bin/everexport_script.py index a7f0e15e60d..500e59f02b1 100755 --- a/src/everest/bin/everexport_script.py +++ b/src/everest/bin/everexport_script.py @@ -4,10 +4,7 @@ import logging from functools import partial -from everest import export_to_csv, export_with_progress from everest.config import EverestConfig -from everest.config.export_config import ExportConfig -from everest.export import check_for_errors from everest.strings import EVEREST @@ -22,27 +19,9 @@ def everexport_entry(args=None): config = options.config_file - # Turn into .export once - # explicit None is disallowed - if config.export is None: - config.export = ExportConfig() - - if options.batches is not None: - batch_list = [int(item) for item in options.batches] - config.export.batches = batch_list - - err_msgs, export_ecl = check_for_errors( - config=config.export, - optimization_output_path=config.optimization_output_dir, - storage_path=config.storage_dir, - data_file_path=config.model.data_file, - ) - for msg in err_msgs: - logger.warning(msg) - - export_to_csv( - data_frame=export_with_progress(config, export_ecl), - export_path=config.export_path, + logger.info("Everexport deprecation warning seen") + print( + f"Everexport is deprecated, optimization results already exist @ {config.optimization_output_dir}" ) diff --git a/src/everest/bin/utils.py b/src/everest/bin/utils.py index 19971b9adfe..ef73ce988ec 100644 --- a/src/everest/bin/utils.py +++ b/src/everest/bin/utils.py @@ -8,10 +8,8 @@ import colorama from colorama import Fore -from pandas import DataFrame from ert.resources import all_shell_script_fm_steps -from everest.config import EverestConfig from everest.detached import ( OPT_PROGRESS_ID, SIM_PROGRESS_ID, @@ -20,41 +18,9 @@ get_opt_status, start_monitor, ) -from everest.export import export_data from everest.simulator import JOB_FAILURE, JOB_RUNNING, JOB_SUCCESS from everest.strings import EVEREST -try: - from progressbar import AdaptiveETA, Bar, Percentage, ProgressBar, Timer -except ImportError: - ProgressBar = None # type: ignore - - -def export_with_progress(config: EverestConfig, export_ecl=True): - logging.getLogger(EVEREST).info("Exporting results to csv ...") - if ProgressBar is not None: - widgets = [Percentage(), " ", Bar(), " ", Timer(), " ", AdaptiveETA()] - with ProgressBar(max_value=1, widgets=widgets) as bar: - return export_data( - export_config=config.export, - output_dir=config.output_dir, - data_file=config.model.data_file if config.model else None, - export_ecl=export_ecl, - progress_callback=bar.update, - ) - return export_data( - export_config=config.export, - output_dir=config.output_dir, - data_file=config.model.data_file if config.model else None, - export_ecl=export_ecl, - ) - - -def export_to_csv(data_frame: DataFrame, export_path: str) -> None: - os.makedirs(os.path.dirname(export_path), exist_ok=True) - data_frame.to_csv(export_path, sep=";", index=False) - logging.getLogger(EVEREST).info(f"Data exported to {export_path}") - def handle_keyboard_interrupt(signal, frame, options): print("\n" + "=" * 80) @@ -335,6 +301,5 @@ def report_on_previous_run( f"Optimization completed.\n" "\nTo re-run the optimization use command:\n" f" `everest run --new-run {config_file}`\n" - "To export the results use command:\n" - f" `everest export {config_file}`" + f"Results are stored in {optimization_output_dir}" ) diff --git a/src/everest/config/__init__.py b/src/everest/config/__init__.py index 4ce9c72f7e5..4f722f14f7d 100644 --- a/src/everest/config/__init__.py +++ b/src/everest/config/__init__.py @@ -6,7 +6,6 @@ from .cvar_config import CVaRConfig from .environment_config import EnvironmentConfig from .everest_config import EverestConfig, EverestValidationError -from .export_config import ExportConfig from .input_constraint_config import InputConstraintConfig from .install_data_config import InstallDataConfig from .install_job_config import InstallJobConfig @@ -29,7 +28,6 @@ "EnvironmentConfig", "EverestConfig", "EverestValidationError", - "ExportConfig", "InputConstraintConfig", "InstallDataConfig", "InstallJobConfig", diff --git a/src/everest/config/everest_config.py b/src/everest/config/everest_config.py index b5e15dc88b4..5524960107d 100644 --- a/src/everest/config/everest_config.py +++ b/src/everest/config/everest_config.py @@ -675,28 +675,6 @@ def function_aliases(self) -> dict[str, str]: aliases[f"{constraint.name}:upper"] = constraint.name return aliases - @property - def export_path(self): - """Returns the export file path. If not file name is provide the default - export file name will have the same name as the config file, with the '.csv' - extension.""" - - export = self.export - - output_path = None - if export is not None: - output_path = export.csv_output_filepath - - if output_path is None: - output_path = "" - - full_file_path = os.path.join(self.output_dir, output_path) - if output_path: - return full_file_path - else: - default_export_file = f"{os.path.splitext(self.config_file)[0]}.csv" - return os.path.join(full_file_path, default_export_file) - def to_dict(self) -> dict: the_dict = self.model_dump(exclude_none=True) diff --git a/src/everest/detached/__init__.py b/src/everest/detached/__init__.py index 984b6ac6c05..1c63070b41a 100644 --- a/src/everest/detached/__init__.py +++ b/src/everest/detached/__init__.py @@ -11,14 +11,14 @@ from pathlib import Path from typing import Literal +import polars import requests -from seba_sqlite.exceptions import ObjectNotFoundError -from seba_sqlite.snapshot import SebaSnapshot from ert.scheduler import create_driver from ert.scheduler.driver import Driver, FailedSubmit from ert.scheduler.event import StartedEvent from everest.config import EverestConfig, ServerConfig +from everest.everest_storage import EverestStorage from everest.strings import ( EVEREST_SERVER_CONFIG, OPT_PROGRESS_ENDPOINT, @@ -123,32 +123,63 @@ def wait_for_server(output_dir: str, timeout: int) -> None: def get_opt_status(output_folder): - """Retrieve a seba database snapshot and return a dictionary with - optimization information.""" - if not os.path.exists(os.path.join(output_folder, "seba.db")): + """Return a dictionary with optimization information retrieved from storage""" + if not Path(output_folder).exists() or not os.listdir(output_folder): return {} + + storage = EverestStorage(Path(output_folder)) try: - seba_snapshot = SebaSnapshot(output_folder) - except ObjectNotFoundError: + storage.read_from_output_dir() + except FileNotFoundError: + # Optimization output dir exists and not empty, but still missing + # actual stored results return {} - snapshot = seba_snapshot.get_snapshot(filter_out_gradient=True) - - cli_monitor_data = {} - if snapshot.optimization_data: - cli_monitor_data = { - "batches": [item.batch_id for item in snapshot.optimization_data], - "controls": [item.controls for item in snapshot.optimization_data], - "objective_value": [ - item.objective_value for item in snapshot.optimization_data - ], - "expected_objectives": snapshot.expected_objectives, - } + + objective_names = storage.data.objective_functions["objective_name"].to_list() + control_names = storage.data.controls["control_name"].to_list() + + expected_objectives = polars.concat( + [ + b.batch_objectives.select(objective_names) + for b in storage.data.batches + if b.batch_objectives is not None + ] + ).to_dict(as_series=False) + + expected_total_objective = [ + b.batch_objectives["total_objective_value"].item() + for b in storage.data.batches + if b.batch_objectives is not None + ] + + improvement_batches = [b.batch_id for b in storage.data.batches if b.is_improvement] + + cli_monitor_data = { + "batches": [ + b.batch_id + for b in storage.data.batches + if b.realization_controls is not None and b.batch_objectives is not None + ], + "controls": [ + b.realization_controls.select(control_names).to_dicts()[0] + for b in storage.data.batches + if b.realization_controls is not None + ], + "objective_value": expected_total_objective, + "expected_objectives": expected_objectives, + } return { - "objective_history": snapshot.expected_single_objective, - "control_history": snapshot.optimization_controls, - "objectives_history": snapshot.expected_objectives, - "accepted_control_indices": snapshot.increased_merit_indices, + "objective_history": expected_total_objective, + "control_history": polars.concat( + [ + b.realization_controls.select(control_names) + for b in storage.data.batches + if b.realization_controls is not None + ] + ).to_dict(as_series=False), + "objectives_history": expected_objectives, + "accepted_control_indices": improvement_batches, "cli_monitor_data": cli_monitor_data, } diff --git a/src/everest/detached/jobs/everserver.py b/src/everest/detached/jobs/everserver.py index 1b12154091f..38830c27278 100755 --- a/src/everest/detached/jobs/everserver.py +++ b/src/everest/detached/jobs/everserver.py @@ -34,10 +34,8 @@ from ert.config.parsing.queue_system import QueueSystem from ert.ensemble_evaluator import EvaluatorServerConfig from ert.run_models.everest_run_model import EverestExitCode, EverestRunModel -from everest import export_to_csv, export_with_progress from everest.config import EverestConfig, ServerConfig from everest.detached import ServerStatus, get_opt_status, update_everserver_status -from everest.export import check_for_errors from everest.plugins.everest_plugin_manager import EverestPluginManager from everest.simulator import JOB_FAILURE from everest.strings import ( @@ -331,34 +329,6 @@ def main(): ) return - try: - # Exporting data - update_everserver_status(status_path, ServerStatus.exporting_to_csv) - - if config.export is not None: - err_msgs, export_ecl = check_for_errors( - config=config.export, - optimization_output_path=config.optimization_output_dir, - storage_path=config.storage_dir, - data_file_path=config.model.data_file, - ) - for msg in err_msgs: - logging.getLogger(EVEREST).warning(msg) - else: - export_ecl = True - - export_to_csv( - data_frame=export_with_progress(config, export_ecl), - export_path=config.export_path, - ) - except: - update_everserver_status( - status_path, - ServerStatus.failed, - message=traceback.format_exc(), - ) - return - update_everserver_status(status_path, ServerStatus.completed, message=message) diff --git a/src/everest/everest_storage.py b/src/everest/everest_storage.py new file mode 100644 index 00000000000..bb4d516ab93 --- /dev/null +++ b/src/everest/everest_storage.py @@ -0,0 +1,893 @@ +from __future__ import annotations + +import json +import logging +import os +from dataclasses import dataclass, field +from pathlib import Path +from typing import ( + Any, + TypedDict, + cast, +) + +import numpy as np +import polars +from ropt.enums import EventType +from ropt.plan import BasicOptimizer, Event +from ropt.results import FunctionResults, GradientResults, convert_to_maximize + +logger = logging.getLogger(__name__) + + +@dataclass +class OptimalResult: + batch: int + controls: list[Any] + total_objective: float + + +def try_read_df(path: Path) -> polars.DataFrame | None: + return polars.read_parquet(path) if path.exists() else None + + +@dataclass +class BatchStorageData: + batch_id: int + realization_controls: polars.DataFrame + batch_objectives: polars.DataFrame | None + realization_objectives: polars.DataFrame | None + batch_constraints: polars.DataFrame | None + realization_constraints: polars.DataFrame | None + batch_objective_gradient: polars.DataFrame | None + perturbation_objectives: polars.DataFrame | None + batch_constraint_gradient: polars.DataFrame | None + perturbation_constraints: polars.DataFrame | None + is_improvement: bool | None = False + + @property + def existing_dataframes(self) -> dict[str, polars.DataFrame]: + return { + k: cast(polars.DataFrame, getattr(self, k)) + for k in [ + "batch_objectives", + "batch_objective_gradient", + "batch_constraints", + "batch_constraint_gradient", + "realization_controls", + "realization_objectives", + "realization_constraints", + "perturbation_objectives", + "perturbation_constraints", + ] + if getattr(self, k) is not None + } + + +@dataclass +class OptimizationStorageData: + batches: list[BatchStorageData] = field(default_factory=list) + controls: polars.DataFrame | None = None + objective_functions: polars.DataFrame | None = None + nonlinear_constraints: polars.DataFrame | None = None + realization_weights: polars.DataFrame | None = None + + def simulation_to_geo_realization_map(self, batch_id: int) -> dict[int, int]: + """ + Mapping from simulation ID to geo-realization + """ + dummy_df = next( + ( + b.realization_controls + for b in self.batches + if b.batch_id == batch_id and b.realization_controls is not None + ), + None, + ) + + if dummy_df is None: + return {} + + mapping = {} + for d in dummy_df.select("realization", "simulation_id").to_dicts(): + mapping[int(d["simulation_id"])] = int(d["realization"]) + + return mapping + + @property + def existing_dataframes(self) -> dict[str, polars.DataFrame]: + return { + k: cast(polars.DataFrame, getattr(self, k)) + for k in [ + "controls", + "objective_functions", + "nonlinear_constraints", + "realization_weights", + ] + if getattr(self, k) is not None + } + + def write_to_experiment(self, experiment: _OptimizerOnlyExperiment) -> None: + for df_name, df in self.existing_dataframes.items(): + df.write_parquet(f"{experiment.optimizer_mount_point / df_name}.parquet") + + for batch_data in self.batches: + ensemble = experiment.get_ensemble_by_name(f"batch_{batch_data.batch_id}") + with open( + ensemble.optimizer_mount_point / "batch.json", "w+", encoding="utf-8" + ) as f: + json.dump( + { + "batch_id": batch_data.batch_id, + "is_improvement": batch_data.is_improvement, + }, + f, + ) + + for df_key, df in batch_data.existing_dataframes.items(): + df.write_parquet(ensemble.optimizer_mount_point / f"{df_key}.parquet") + + def read_from_experiment(self, experiment: _OptimizerOnlyExperiment) -> None: + self.controls = polars.read_parquet( + experiment.optimizer_mount_point / "controls.parquet" + ) + self.objective_functions = polars.read_parquet( + experiment.optimizer_mount_point / "objective_functions.parquet" + ) + + if ( + experiment.optimizer_mount_point / "nonlinear_constraints.parquet" + ).exists(): + self.nonlinear_constraints = polars.read_parquet( + experiment.optimizer_mount_point / "nonlinear_constraints.parquet" + ) + + if (experiment.optimizer_mount_point / "realization_weights.parquet").exists(): + self.realization_weights = polars.read_parquet( + experiment.optimizer_mount_point / "realization_weights.parquet" + ) + + for ens in experiment.ensembles.values(): + with open(ens.optimizer_mount_point / "batch.json", encoding="utf-8") as f: + info = json.load(f) + + self.batches.append( + BatchStorageData( + batch_id=info["batch_id"], + **{ + df_name: try_read_df( + Path(ens.optimizer_mount_point) / f"{df_name}.parquet" + ) + for df_name in [ + "batch_objectives", + "batch_objective_gradient", + "batch_constraints", + "batch_constraint_gradient", + "realization_controls", + "realization_objectives", + "realization_constraints", + "perturbation_objectives", + "perturbation_constraints", + ] + }, + is_improvement=info["is_improvement"], + ) + ) + + self.batches.sort(key=lambda b: b.batch_id) + + +class _OptimizerOnlyEnsemble: + def __init__(self, output_dir: Path) -> None: + self._output_dir = output_dir + + @property + def optimizer_mount_point(self) -> Path: + if not (self._output_dir / "optimizer").exists(): + Path.mkdir(self._output_dir / "optimizer", parents=True) + + return self._output_dir / "optimizer" + + +class _OptimizerOnlyExperiment: + """ + Mocks an ERT storage, if we want to store optimization results within the + ERT storage, we can use an ERT Experiment object with an optimizer_mount_point + property + """ + + def __init__(self, output_dir: Path) -> None: + self._output_dir = output_dir + self._ensembles = {} + + @property + def optimizer_mount_point(self) -> Path: + if not (self._output_dir / "optimizer").exists(): + Path.mkdir(self._output_dir / "optimizer", parents=True) + + return self._output_dir / "optimizer" + + @property + def ensembles(self) -> dict[str, _OptimizerOnlyEnsemble]: + return { + str(d): _OptimizerOnlyEnsemble(self._output_dir / "ensembles" / d) + for d in os.listdir(self._output_dir / "ensembles") + if "batch_" in d + } + + def get_ensemble_by_name(self, name: str) -> _OptimizerOnlyEnsemble: + if name not in self._ensembles: + self._ensembles[name] = _OptimizerOnlyEnsemble( + self._output_dir / "ensembles" / name + ) + + return self._ensembles[name] + + +@dataclass +class _EvaluationResults(TypedDict): + realization_controls: polars.DataFrame + batch_objectives: polars.DataFrame + realization_objectives: polars.DataFrame + batch_constraints: polars.DataFrame | None + realization_constraints: polars.DataFrame | None + + +@dataclass +class _GradientResults(TypedDict): + batch_objective_gradient: polars.DataFrame | None + perturbation_objectives: polars.DataFrame | None + batch_constraint_gradient: polars.DataFrame | None + perturbation_constraints: polars.DataFrame | None + + +@dataclass +class _MeritValue: + value: float + iter: int + + +class EverestStorage: + def __init__( + self, + output_dir: Path, + ) -> None: + self._control_ensemble_id = 0 + self._gradient_ensemble_id = 0 + + self._output_dir = output_dir + self.data = OptimizationStorageData() + + @staticmethod + def _rename_ropt_df_columns(df: polars.DataFrame) -> polars.DataFrame: + """ + Renames columns of a dataframe from ROPT to what will be displayed + to the user. + """ + scaled_cols = [c for c in df.columns if c.lower().startswith("scaled")] + if len(scaled_cols) > 0: + raise ValueError("Scaled columns should not be stored into Everest storage") + + # Keys are ROPT column keys + # values are corresponding column keys we present to the user + renames = { + "objective": "objective_name", + "weighted_objective": "total_objective_value", + "variable": "control_name", + "variables": "control_value", + "objectives": "objective_value", + "constraints": "constraint_value", + "nonlinear_constraint": "constraint_name", + "perturbed_variables": "perturbed_control_value", + "perturbed_objectives": "perturbed_objective_value", + "perturbed_constraints": "perturbed_constraint_value", + "evaluation_ids": "simulation_id", + } + return df.rename({k: v for k, v in renames.items() if k in df.columns}) + + @staticmethod + def _enforce_dtypes(df: polars.DataFrame) -> polars.DataFrame: + dtypes = { + "batch_id": polars.UInt32, + "perturbation": polars.UInt32, + "realization": polars.UInt32, + # -1 is used as a value in simulator cache. + # thus we need signed, otherwise we could do unsigned + "simulation_id": polars.Int32, + "perturbed_evaluation_ids": polars.Int32, + "objective_name": polars.String, + "control_name": polars.String, + "constraint_name": polars.String, + "total_objective_value": polars.Float64, + "control_value": polars.Float64, + "objective_value": polars.Float64, + "constraint_value": polars.Float64, + "perturbed_control_value": polars.Float64, + "perturbed_objective_value": polars.Float64, + "perturbed_constraint_value": polars.Float64, + } + + existing_cols = set(df.columns) + unaccounted_cols = existing_cols - set(dtypes) + if len(unaccounted_cols) > 0: + raise KeyError( + f"Expected all keys to have a specified dtype, found {unaccounted_cols}" + ) + + df = df.cast( + { + colname: dtype + for colname, dtype in dtypes.items() + if colname in df.columns + } + ) + + return df + + def write_to_output_dir(self) -> None: + exp = _OptimizerOnlyExperiment(self._output_dir) + + # csv writing mostly for dev/debugging/quick inspection + self.data.write_to_experiment(exp) + + def read_from_output_dir(self) -> None: + exp = _OptimizerOnlyExperiment(self._output_dir) + self.data.read_from_experiment(exp) + + def observe_optimizer( + self, + optimizer: BasicOptimizer, + ) -> None: + optimizer.add_observer( + EventType.START_OPTIMIZER_STEP, self._on_start_optimization + ) + optimizer.add_observer( + EventType.FINISHED_EVALUATION, self._on_batch_evaluation_finished + ) + optimizer.add_observer( + EventType.FINISHED_OPTIMIZER_STEP, + self._on_optimization_finished, + ) + + def _on_start_optimization(self, event: Event) -> None: + def _format_control_names(control_names): + converted_names = [] + for name in control_names: + converted = f"{name[0]}_{name[1]}" + if len(name) > 2: + converted += f"-{name[2]}" + converted_names.append(converted) + + return converted_names + + config = event.config + + # Note: We probably do not have to store + # all of this information, consider removing. + self.data.controls = polars.DataFrame( + { + "control_name": polars.Series( + _format_control_names(config.variables.names), dtype=polars.String + ), + "initial_value": polars.Series( + config.variables.initial_values, dtype=polars.Float64 + ), + "lower_bounds": polars.Series( + config.variables.lower_bounds, dtype=polars.Float64 + ), + "upper_bounds": polars.Series( + config.variables.upper_bounds, dtype=polars.Float64 + ), + } + ) + + self.data.objective_functions = polars.DataFrame( + { + "objective_name": config.objectives.names, + "weight": polars.Series( + config.objectives.weights, dtype=polars.Float64 + ), + "normalization": polars.Series( # Q: Is this correct? + [1.0 / s for s in config.objectives.scales], + dtype=polars.Float64, + ), + } + ) + + if config.nonlinear_constraints is not None: + self.data.nonlinear_constraints = polars.DataFrame( + { + "constraint_name": config.nonlinear_constraints.names, + "normalization": [ + 1.0 / s for s in config.nonlinear_constraints.scales + ], # Q: Is this correct? + "constraint_rhs_value": config.nonlinear_constraints.rhs_values, + "constraint_type": config.nonlinear_constraints.types, + } + ) + + self.data.realization_weights = polars.DataFrame( + { + "realization": polars.Series( + config.realizations.names, dtype=polars.UInt32 + ), + "weight": polars.Series( + config.realizations.weights, dtype=polars.Float64 + ), + } + ) + + def _store_function_results(self, results: FunctionResults) -> _EvaluationResults: + # We could select only objective values, + # but we select all to also get the constraint values (if they exist) + realization_objectives = polars.from_pandas( + results.to_dataframe( + "evaluations", + select=["objectives", "evaluation_ids"], + ).reset_index(), + ).select( + "batch_id", + "realization", + "objective", + "objectives", + "evaluation_ids", + ) + + if results.nonlinear_constraints is not None: + realization_constraints = polars.from_pandas( + results.to_dataframe( + "evaluations", + select=["constraints", "evaluation_ids"], + ).reset_index(), + ).select( + "batch_id", + "realization", + "evaluation_ids", + "nonlinear_constraint", + "constraints", + ) + + realization_constraints = self._rename_ropt_df_columns( + realization_constraints + ) + + batch_constraints = polars.from_pandas( + results.to_dataframe("nonlinear_constraints").reset_index() + ).select("batch_id", "nonlinear_constraint", "values", "violations") + + batch_constraints = batch_constraints.rename( + { + "nonlinear_constraint": "constraint_name", + "values": "constraint_value", + "violations": "constraint_violation", + } + ) + + constraint_names = batch_constraints["constraint_name"].unique().to_list() + + batch_constraints = batch_constraints.pivot( + on="constraint_name", + values=[ + "constraint_value", + "constraint_violation", + ], + separator=";", + ).rename( + { + **{f"constraint_value;{name}": name for name in constraint_names}, + **{ + f"constraint_violation;{name}": f"{name}.violation" + for name in constraint_names + }, + } + ) + + realization_constraints = realization_constraints.pivot( + values=["constraint_value"], on="constraint_name" + ) + else: + batch_constraints = None + realization_constraints = None + + batch_objectives = polars.from_pandas( + results.to_dataframe( + "functions", + select=["objectives", "weighted_objective"], + ).reset_index() + ).select("batch_id", "objective", "objectives", "weighted_objective") + + realization_controls = polars.from_pandas( + results.to_dataframe( + "evaluations", select=["variables", "evaluation_ids"] + ).reset_index() + ).select( + "batch_id", + "variable", + "realization", + "variables", + "evaluation_ids", + ) + + realization_controls = self._rename_ropt_df_columns(realization_controls) + realization_controls = self._enforce_dtypes(realization_controls) + + realization_controls = realization_controls.pivot( + on="control_name", + values=["control_value"], + separator=":", + ) + + batch_objectives = self._rename_ropt_df_columns(batch_objectives) + batch_objectives = self._enforce_dtypes(batch_objectives) + + realization_objectives = self._rename_ropt_df_columns(realization_objectives) + realization_objectives = self._enforce_dtypes(realization_objectives) + + batch_objectives = batch_objectives.pivot( + on="objective_name", + values=["objective_value"], + separator=":", + ) + + realization_objectives = realization_objectives.pivot( + values="objective_value", + index=[ + "batch_id", + "realization", + "simulation_id", + ], + columns="objective_name", + ) + + return { + "realization_controls": realization_controls, + "batch_objectives": batch_objectives, + "realization_objectives": realization_objectives, + "batch_constraints": batch_constraints, + "realization_constraints": realization_constraints, + } + + def _store_gradient_results(self, results: GradientResults) -> _GradientResults: + perturbation_objectives = polars.from_pandas( + results.to_dataframe("evaluations").reset_index() + ).select( + [ + "batch_id", + "variable", + "realization", + "perturbation", + "objective", + "variables", + "perturbed_variables", + "perturbed_objectives", + "perturbed_evaluation_ids", + *( + ["nonlinear_constraint", "perturbed_constraints"] + if results.evaluations.perturbed_constraints is not None + else [] + ), + ] + ) + perturbation_objectives = self._rename_ropt_df_columns(perturbation_objectives) + perturbation_objectives = self._enforce_dtypes(perturbation_objectives) + + if results.gradients is not None: + batch_objective_gradient = polars.from_pandas( + results.to_dataframe("gradients").reset_index() + ).select( + [ + "batch_id", + "variable", + "objective", + "weighted_objective", + "objectives", + *( + ["nonlinear_constraint", "constraints"] + if results.gradients.constraints is not None + else [] + ), + ] + ) + batch_objective_gradient = self._rename_ropt_df_columns( + batch_objective_gradient + ) + batch_objective_gradient = self._enforce_dtypes(batch_objective_gradient) + else: + batch_objective_gradient = None + + if results.evaluations.perturbed_constraints is not None: + perturbation_constraints = ( + perturbation_objectives[ + "batch_id", + "realization", + "perturbation", + "control_name", + "perturbed_control_value", + *[ + c + for c in perturbation_objectives.columns + if "constraint" in c.lower() + ], + ] + .pivot(on="constraint_name", values=["perturbed_constraint_value"]) + .pivot(on="control_name", values="perturbed_control_value") + ) + + if batch_objective_gradient is not None: + batch_constraint_gradient = batch_objective_gradient[ + "batch_id", + "control_name", + *[ + c + for c in batch_objective_gradient.columns + if "constraint" in c.lower() + ], + ] + + batch_objective_gradient = batch_objective_gradient.drop( + [ + c + for c in batch_objective_gradient.columns + if "constraint" in c.lower() + ] + ).unique() + + batch_constraint_gradient = batch_constraint_gradient.pivot( + on="constraint_name", + values=["constraint_value"], + ) + else: + batch_constraint_gradient = None + + perturbation_objectives = perturbation_objectives.drop( + [ + c + for c in perturbation_objectives.columns + if "constraint" in c.lower() + ] + ).unique() + else: + batch_constraint_gradient = None + perturbation_constraints = None + + perturbation_objectives = perturbation_objectives.drop( + "perturbed_evaluation_ids", "control_value" + ) + + perturbation_objectives = perturbation_objectives.pivot( + on="objective_name", values="perturbed_objective_value" + ) + + perturbation_objectives = perturbation_objectives.pivot( + on="control_name", values="perturbed_control_value" + ) + + if batch_objective_gradient is not None: + objective_names = ( + batch_objective_gradient["objective_name"].unique().to_list() + ) + batch_objective_gradient = batch_objective_gradient.pivot( + on="objective_name", + values=["objective_value", "total_objective_value"], + separator=";", + ).rename( + { + **{f"objective_value;{name}": name for name in objective_names}, + **{ + f"total_objective_value;{name}": f"{name}.total" + for name in objective_names + }, + } + ) + + return { + "batch_objective_gradient": batch_objective_gradient, + "perturbation_objectives": perturbation_objectives, + "batch_constraint_gradient": batch_constraint_gradient, + "perturbation_constraints": perturbation_constraints, + } + + def _on_batch_evaluation_finished(self, event: Event) -> None: + logger.debug("Storing batch results dataframes") + + converted_results = tuple( + convert_to_maximize(result) for result in event.results + ) + results: list[FunctionResults | GradientResults] = [] + + best_value = -np.inf + best_results = None + for item in converted_results: + if isinstance(item, GradientResults): + results.append(item) + if ( + isinstance(item, FunctionResults) + and item.functions is not None + and item.functions.weighted_objective > best_value + ): + best_value = item.functions.weighted_objective + best_results = item + + if best_results is not None: + results = [best_results, *results] + + batch_dicts = {} + for item in results: + if item.batch_id not in batch_dicts: + batch_dicts[item.batch_id] = {} + + if isinstance(item, FunctionResults): + eval_results = self._store_function_results(item) + batch_dicts[item.batch_id].update(eval_results) + + if isinstance(item, GradientResults): + gradient_results = self._store_gradient_results(item) + batch_dicts[item.batch_id].update(gradient_results) + + for batch_id, batch_dict in batch_dicts.items(): + self.data.batches.append( + BatchStorageData( + batch_id=batch_id, + realization_controls=batch_dict.get("realization_controls"), + batch_objectives=batch_dict.get("batch_objectives"), + realization_objectives=batch_dict.get("realization_objectives"), + batch_constraints=batch_dict.get("batch_constraints"), + realization_constraints=batch_dict.get("realization_constraints"), + batch_objective_gradient=batch_dict.get("batch_objective_gradient"), + perturbation_objectives=batch_dict.get("perturbation_objectives"), + batch_constraint_gradient=batch_dict.get( + "batch_constraint_gradient" + ), + perturbation_constraints=batch_dict.get("perturbation_constraints"), + ) + ) + + def _on_optimization_finished(self, _) -> None: + logger.debug("Storing final results Everest storage") + + merit_values = self._get_merit_values() + if merit_values: + # NOTE: Batch 0 is always an "accepted batch", and "accepted batches" are + # batches with merit_flag , which means that it was an improvement + self.data.batches[0].is_improvement = True + + improvement_batches = [ + b for b in self.data.batches if b.batch_objectives is not None + ][1:] + for i, b in enumerate(improvement_batches): + merit_value = next( + (m.value for m in merit_values if (m.iter - 1) == i), None + ) + if merit_value is None: + continue + + b.batch_objectives = b.batch_objectives.with_columns( + polars.lit(merit_value).alias("merit_value") + ) + b.is_improvement = True + else: + max_total_objective = -np.inf + for b in self.data.batches: + if b.batch_objectives is not None: + total_objective = b.batch_objectives["total_objective_value"].item() + if total_objective > max_total_objective: + b.is_improvement = True + max_total_objective = total_objective + + self.write_to_output_dir() + + def get_optimal_result(self) -> OptimalResult | None: + # Only used in tests, but re-created to ensure + # same behavior as w/ old SEBA setup + has_merit = any( + "merit_value" in b.batch_objectives.columns + for b in self.data.batches + if b.batch_objectives is not None + ) + + def find_best_batch( + filter_by, sort_by + ) -> tuple[BatchStorageData | None, dict | None]: + matching_batches = [b for b in self.data.batches if filter_by(b)] + + if not matching_batches: + return None, None + + matching_batches.sort(key=sort_by) + batch = matching_batches[0] + controls_dict = batch.realization_controls.drop( + [ + "batch_id", + "simulation_id", + "realization", + ] + ).to_dicts()[0] + + return batch, controls_dict + + if has_merit: + # Minimize merit + batch, controls_dict = find_best_batch( + filter_by=lambda b: ( + b.batch_objectives is not None + and "merit_value" in b.batch_objectives.columns + ), + sort_by=lambda b: b.batch_objectives.select( + polars.col("merit_value").min() + ).item(), + ) + + if batch is None: + return None + + return OptimalResult( + batch=batch.batch_id, + controls=controls_dict, + total_objective=batch.batch_objectives.select( + polars.col("total_objective_value").sample(n=1) + ).item(), + ) + else: + # Maximize objective + batch, controls_dict = find_best_batch( + filter_by=lambda b: b.batch_objectives is not None + and not b.batch_objectives.is_empty(), + sort_by=lambda b: -b.batch_objectives.select( + polars.col("total_objective_value").sample(n=1) + ).item(), + ) + + if batch is None: + return None + + return OptimalResult( + batch=batch.batch_id, + controls=controls_dict, + total_objective=batch.batch_objectives.select( + polars.col("total_objective_value") + ).item(), + ) + + def _get_merit_values(self) -> list[_MeritValue]: + # Read the file containing merit information. + # The file should contain the following table header + # Iter F(x) mu alpha Merit feval btracks Penalty + # :return: merit values indexed by the function evaluation number + + merit_file = Path(self._output_dir) / "dakota" / "OPT_DEFAULT.out" + + def _get_merit_fn_lines() -> list[str]: + if os.path.isfile(merit_file): + with open(merit_file, errors="replace", encoding="utf-8") as reader: + lines = reader.readlines() + start_line_idx = -1 + for inx, line in enumerate(lines): + if "Merit" in line and "feval" in line: + start_line_idx = inx + 1 + if start_line_idx > -1 and line.startswith("="): + return lines[start_line_idx:inx] + if start_line_idx > -1: + return lines[start_line_idx:] + return [] + + def _parse_merit_line(merit_values_string: str) -> tuple[int, float] | None: + values = [] + for merit_elem in merit_values_string.split(): + try: + values.append(float(merit_elem)) + except ValueError: + for elem in merit_elem.split("0x")[1:]: + values.append(float.fromhex("0x" + elem)) + if len(values) == 8: + # Dakota starts counting at one, correct to be zero-based. + return int(values[5]) - 1, values[4] + return None + + merit_values = [] + if merit_file.exists(): + for line in _get_merit_fn_lines(): + value = _parse_merit_line(line) + if value is not None: + merit_values.append(_MeritValue(iter=value[0], value=value[1])) + + return merit_values diff --git a/src/everest/export.py b/src/everest/export.py index 318a2cef54c..e69de29bb2d 100644 --- a/src/everest/export.py +++ b/src/everest/export.py @@ -1,365 +0,0 @@ -import os -import re -from enum import StrEnum -from typing import Any - -import pandas as pd -from pandas import DataFrame -from seba_sqlite.snapshot import SebaSnapshot - -from ert.storage import open_storage -from everest.config import ExportConfig -from everest.strings import STORAGE_DIR - - -class MetaDataColumnNames(StrEnum): - # NOTE: Always add a new column name to the list below! - BATCH = "batch" - REALIZATION = "realization" - REALIZATION_WEIGHT = "realization_weight" - SIMULATION = "simulation" - IS_GRADIENT = "is_gradient" - SUCCESS = "success" - START_TIME = "start_time" - END_TIME = "end_time" - SIM_AVERAGED_OBJECTIVE = "sim_avg_obj" - REAL_AVERAGED_OBJECTIVE = "real_avg_obj" - SIMULATED_DATE = "sim_date" - INCREASED_MERIT = "increased_merit" - - @classmethod - def get_all(cls): - return [ - cls.BATCH, - cls.REALIZATION, - cls.REALIZATION_WEIGHT, - cls.SIMULATION, - cls.IS_GRADIENT, - cls.SUCCESS, - cls.START_TIME, - cls.END_TIME, - cls.SIM_AVERAGED_OBJECTIVE, - cls.REAL_AVERAGED_OBJECTIVE, - cls.SIMULATED_DATE, - cls.INCREASED_MERIT, - ] - - -def filter_data(data: DataFrame, keyword_filters: set[str]): - filtered_columns = [] - - for col in data.columns: - for expr in keyword_filters: - expr = expr.replace("*", ".*") - if re.match(expr, col) is not None: - filtered_columns.append(col) - - return data[filtered_columns] - - -def available_batches(optimization_output_dir: str) -> set[int]: - snapshot = SebaSnapshot(optimization_output_dir).get_snapshot( - filter_out_gradient=False, batches=None - ) - return {data.batch for data in snapshot.simulation_data} - - -def export_metadata(config: ExportConfig | None, optimization_output_dir: str): - discard_gradient = True - discard_rejected = True - batches = None - - if config: - if config.discard_gradient is not None: - discard_gradient = config.discard_gradient - - if config.discard_rejected is not None: - discard_rejected = config.discard_rejected - - if config.batches: - # If user defined batches to export in the conf file, ignore previously - # discard gradient and discard rejected flags if defined and true - discard_rejected = False - discard_gradient = False - batches = config.batches - - snapshot = SebaSnapshot(optimization_output_dir).get_snapshot( - filter_out_gradient=discard_gradient, - batches=batches, - ) - - opt_data = snapshot.optimization_data_by_batch - metadata = [] - for data in snapshot.simulation_data: - # If export section not defined in the config file export only increased - # merit non-gradient simulation results - if ( - discard_rejected - and data.batch in opt_data - and opt_data[data.batch].merit_flag != 1 - ): - continue - - md_row: dict[str, Any] = { - MetaDataColumnNames.BATCH: data.batch, - MetaDataColumnNames.SIM_AVERAGED_OBJECTIVE: data.sim_avg_obj, - MetaDataColumnNames.IS_GRADIENT: data.is_gradient, - MetaDataColumnNames.REALIZATION: int(data.realization), - MetaDataColumnNames.START_TIME: data.start_time, - MetaDataColumnNames.END_TIME: data.end_time, - MetaDataColumnNames.SUCCESS: data.success, - MetaDataColumnNames.REALIZATION_WEIGHT: data.realization_weight, - MetaDataColumnNames.SIMULATION: int(data.simulation), - } - if data.objectives: - md_row.update(data.objectives) - if data.constraints: - md_row.update(data.constraints) - if data.controls: - md_row.update(data.controls) - - if not md_row[MetaDataColumnNames.IS_GRADIENT]: - if md_row[MetaDataColumnNames.BATCH] in opt_data: - opt = opt_data[md_row[MetaDataColumnNames.BATCH]] - md_row.update( - { - MetaDataColumnNames.REAL_AVERAGED_OBJECTIVE: opt.objective_value, - MetaDataColumnNames.INCREASED_MERIT: opt.merit_flag, - } - ) - for function, gradients in opt.gradient_info.items(): - for control, gradient_value in gradients.items(): - md_row.update( - {f"gradient-{function}-{control}": gradient_value} - ) - else: - print( - f"Batch {md_row[MetaDataColumnNames.BATCH]} has no available optimization data" - ) - metadata.append(md_row) - - return metadata - - -def get_internalized_keys( - config: ExportConfig, - storage_path: str, - optimization_output_path: str, - batch_ids: set[int] | None = None, -): - if batch_ids is None: - metadata = export_metadata(config, optimization_output_path) - batch_ids = {data[MetaDataColumnNames.BATCH] for data in metadata} - internal_keys: set = set() - with open_storage(storage_path, "r") as storage: - for batch_id in batch_ids: - experiments = [*storage.experiments] - assert len(experiments) == 1 - experiment = experiments[0] - - ensemble = experiment.get_ensemble_by_name(f"batch_{batch_id}") - if not internal_keys: - internal_keys = set( - ensemble.experiment.response_type_to_response_keys["summary"] - ) - else: - internal_keys = internal_keys.intersection( - set(ensemble.experiment.response_type_to_response_keys["summary"]) - ) - - return internal_keys - - -def check_for_errors( - config: ExportConfig, - optimization_output_path: str, - storage_path: str, - data_file_path: str | None, -): - """ - Checks for possible errors when attempting to export current optimization - case. - """ - export_ecl = True - export_errors: list[str] = [] - - if config.batches: - available_batches_ = available_batches(optimization_output_path) - for batch in set(config.batches).difference(available_batches_): - export_errors.append( - f"Batch {batch} not found in optimization " - "results. Skipping for current export." - ) - config.batches = list(set(config.batches).intersection(available_batches_)) - - if config.batches == []: - export_errors.append( - "No batches selected for export. Only optimization data will be exported." - ) - return export_errors, False - - if not data_file_path: - export_ecl = False - export_errors.append( - "No data file found in config.Only optimization data will be exported." - ) - - # If no user defined keywords are present it is no longer possible to check - # availability in internal storage - if config.keywords is None: - return export_errors, export_ecl - - if not config.keywords: - export_ecl = False - export_errors.append( - "No eclipse keywords selected for export. Only" - " optimization data will be exported." - ) - - internal_keys = get_internalized_keys( - config=config, - storage_path=storage_path, - optimization_output_path=optimization_output_path, - batch_ids=set(config.batches) if config.batches else None, - ) - - extra_keys = set(config.keywords).difference(set(internal_keys)) - if extra_keys: - export_ecl = False - export_errors.append( - f"Non-internalized ecl keys selected for export '{' '.join(extra_keys)}'." - " in order to internalize missing keywords " - f"run 'everest load '. " - "Only optimization data will be exported." - ) - - return export_errors, export_ecl - - -def export_data( - export_config: ExportConfig | None, - output_dir: str, - data_file: str | None, - export_ecl=True, - progress_callback=lambda _: None, -): - """Export everest data into a pandas dataframe. If the config specifies - a data_file and @export_ecl is True, simulation data is included. When - exporting simulation data, only keywords matching elements in @ecl_keywords - are exported. Note that wildcards are allowed. - - @progress_callback will be called with a number between 0 and 1 indicating - the fraction of batches that has been loaded. - """ - - ecl_keywords = None - # If user exports with a config file that has the SKIP_EXPORT - # set to true export nothing - if export_config is not None: - if export_config.skip_export or export_config.batches == []: - return pd.DataFrame([]) - - ecl_keywords = export_config.keywords - optimization_output_dir = os.path.join( - os.path.abspath(output_dir), "optimization_output" - ) - metadata = export_metadata(export_config, optimization_output_dir) - if data_file is None or not export_ecl: - return pd.DataFrame(metadata) - - data = load_simulation_data( - output_path=output_dir, - metadata=metadata, - progress_callback=progress_callback, - ) - - if ecl_keywords is not None: - keywords = tuple(ecl_keywords) - # NOTE: Some of these keywords are necessary to export successfully, - # we should not leave this to the user - keywords += tuple(pd.DataFrame(metadata).columns) - keywords += tuple(MetaDataColumnNames.get_all()) - keywords_set = set(keywords) - data = filter_data(data, keywords_set) - - return data - - -def load_simulation_data( - output_path: str, metadata: list[dict], progress_callback=lambda _: None -): - """Export simulations to a pandas DataFrame - @output_path optimization output folder path. - @metadata is a one ora a list of dictionaries. Keys from the dictionary become - columns in the resulting dataframe. The values from the dictionary are - assigned to those columns for the corresponding simulation. - If a column is defined for some simulations but not for others, the value - for that column is set to NaN for simulations without it - - For instance, assume we have 2 simulations and - tags = [ {'geoid': 0, 'sim': 'ro'}, - {'geoid': 2, 'sim': 'pi', 'best': True }, - ] - And assume exporting each of the two simulations produces 3 rows. - The resulting dataframe will be something like - geoid sim best data... - 0 0 ro sim_0_row_0... - 1 0 ro sim_0_row_1... - 2 0 ro sim_0_row_2... - 3 2 pi True sim_1_row_0... - 4 2 pi True sim_2_row_0... - 5 2 pi True sim_3_row_0... - """ - ens_path = os.path.join(output_path, STORAGE_DIR) - with open_storage(ens_path, "r") as storage: - # pylint: disable=unnecessary-lambda-assignment - def load_batch_by_id(): - experiments = [*storage.experiments] - - # Always assume 1 experiment per simulation/enspath, never multiple - assert len(experiments) == 1 - experiment = experiments[0] - - ensemble = experiment.get_ensemble_by_name(f"batch_{batch}") - realizations = ensemble.get_realization_list_with_responses() - try: - df_pl = ensemble.load_responses("summary", tuple(realizations)) - except (ValueError, KeyError): - return pd.DataFrame() - df_pl = df_pl.pivot( - on="response_key", index=["realization", "time"], sort_columns=True - ) - df_pl = df_pl.rename({"time": "Date", "realization": "Realization"}) - return ( - df_pl.to_pandas() - .set_index(["Realization", "Date"]) - .sort_values(by=["Date", "Realization"]) - ) - - batches = {elem[MetaDataColumnNames.BATCH] for elem in metadata} - batch_data = [] - for idx, batch in enumerate(batches): - progress_callback(float(idx) / len(batches)) - batch_data.append(load_batch_by_id()) - batch_data[-1][MetaDataColumnNames.BATCH] = batch - - for b in batch_data: - b.reset_index(inplace=True) - b.rename( - index=str, - inplace=True, - columns={ - "Realization": MetaDataColumnNames.SIMULATION, - "Date": MetaDataColumnNames.SIMULATED_DATE, - }, - ) - - data = pd.concat(batch_data, ignore_index=True, sort=False) - data = pd.merge( - left=data, - right=pd.DataFrame(metadata), - on=[MetaDataColumnNames.BATCH, MetaDataColumnNames.SIMULATION], - sort=False, - ) - - return data diff --git a/tests/everest/conftest.py b/tests/everest/conftest.py index 41ef76c3e75..d0ea5dd387d 100644 --- a/tests/everest/conftest.py +++ b/tests/everest/conftest.py @@ -235,5 +235,3 @@ def mock_server(monkeypatch): monkeypatch.setattr(everserver, "_find_open_port", lambda *args, **kwargs: 42) monkeypatch.setattr(everserver, "_write_hostfile", MagicMock()) monkeypatch.setattr(everserver, "_everserver_thread", MagicMock()) - monkeypatch.setattr(everserver, "export_to_csv", MagicMock()) - monkeypatch.setattr(everserver, "export_with_progress", MagicMock()) diff --git a/tests/everest/entry_points/test_config_branch_entry.py b/tests/everest/entry_points/test_config_branch_entry.py index bbf11ef5338..8a0ae9c2994 100644 --- a/tests/everest/entry_points/test_config_branch_entry.py +++ b/tests/everest/entry_points/test_config_branch_entry.py @@ -2,10 +2,9 @@ from os.path import exists from pathlib import Path -from seba_sqlite.snapshot import SebaSnapshot - from everest.bin.config_branch_script import config_branch_entry from everest.config_file_loader import load_yaml +from everest.everest_storage import EverestStorage def test_config_branch_entry(cached_example): @@ -27,19 +26,21 @@ def test_config_branch_entry(cached_example): assert len(new_controls) == len(old_controls) assert len(new_controls[0]["variables"]) == len(old_controls[0]["variables"]) - opt_controls = {} - - snapshot = SebaSnapshot(Path(path) / "everest_output" / "optimization_output") - for opt_data in snapshot._optimization_data(): - if opt_data.batch_id == 1: - opt_controls = opt_data.controls + storage = EverestStorage(Path(path) / "everest_output" / "optimization_output") + storage.read_from_output_dir() new_controls_initial_guesses = { var["initial_guess"] for var in new_controls[0]["variables"] } - opt_control_val_for_batch_id = {v for k, v in opt_controls.items()} - assert new_controls_initial_guesses == opt_control_val_for_batch_id + control_names = storage.data.controls["control_name"] + batch_1_info = next(b for b in storage.data.batches if b.batch_id == 1) + realization_control_vals = batch_1_info.realization_controls.select( + *control_names + ).to_dicts()[0] + control_values = set(realization_control_vals.values()) + + assert new_controls_initial_guesses == control_values def test_config_branch_preserves_config_section_order(cached_example): @@ -48,14 +49,6 @@ def test_config_branch_preserves_config_section_order(cached_example): config_branch_entry(["config_minimal.yml", "new_restart_config.yml", "-b", "1"]) assert exists("new_restart_config.yml") - opt_controls = {} - - snapshot = SebaSnapshot(Path(path) / "everest_output" / "optimization_output") - for opt_data in snapshot._optimization_data(): - if opt_data.batch_id == 1: - opt_controls = opt_data.controls - - opt_control_val_for_batch_id = {v for k, v in opt_controls.items()} diff_lines = [] with ( @@ -77,5 +70,16 @@ def test_config_branch_preserves_config_section_order(cached_example): diff_lines.append(line.replace(" ", "").strip()) assert len(diff_lines) == 4 - for control_val in opt_control_val_for_batch_id: + assert "-initial_guess:0.1" in diff_lines + + storage = EverestStorage(Path(path) / "everest_output" / "optimization_output") + storage.read_from_output_dir() + control_names = storage.data.controls["control_name"] + batch_1_info = next(b for b in storage.data.batches if b.batch_id == 1) + realization_control_vals = batch_1_info.realization_controls.select( + *control_names + ).to_dicts()[0] + control_values = set(realization_control_vals.values()) + + for control_val in control_values: assert f"+initial_guess:{control_val}" in diff_lines diff --git a/tests/everest/entry_points/test_everexport.py b/tests/everest/entry_points/test_everexport.py index e16ca6f4a57..e69de29bb2d 100644 --- a/tests/everest/entry_points/test_everexport.py +++ b/tests/everest/entry_points/test_everexport.py @@ -1,310 +0,0 @@ -import logging -import os -from pathlib import Path -from unittest.mock import patch - -import pandas as pd -import pytest - -from everest import MetaDataColumnNames as MDCN -from everest.bin.everexport_script import everexport_entry -from everest.bin.utils import ProgressBar -from everest.config import EverestConfig, ExportConfig -from tests.everest.utils import ( - satisfy, - satisfy_callable, - satisfy_type, -) - -CONFIG_FILE_MINIMAL = "config_minimal.yml" - -CONFIG_FILE_MOCKED_TEST_CASE = "mocked_multi_batch.yml" - - -pytestmark = pytest.mark.xdist_group(name="starts_everest") - -TEST_DATA = pd.DataFrame( - columns=[ - MDCN.BATCH, - MDCN.SIMULATION, - MDCN.IS_GRADIENT, - MDCN.START_TIME, - ], - data=[ - [0, 0, False, 0.0], # First func evaluation on 2 realizations - [0, 1, False, 0.0], - [0, 2, True, 0.0], # First grad evaluation 2 perts per real - [0, 3, True, 0.1], - [0, 4, True, 0.1], - [0, 5, True, 0.1], - [1, 0, False, 0.3], - [1, 1, False, 0.32], - [2, 0, True, 0.5], - [2, 1, True, 0.5], - [2, 2, True, 0.5], - [2, 3, True, 0.6], - ], -) - - -def export_mock(config, export_ecl=True, progress_callback=lambda _: None): - progress_callback(1.0) - return TEST_DATA - - -def empty_mock(config, export_ecl=True, progress_callback=lambda _: None): - progress_callback(1.0) - return pd.DataFrame() - - -def validate_export_mock(**_): - return ([], True) - - -@patch("everest.bin.everexport_script.export_with_progress", side_effect=export_mock) -def test_everexport_entry_run(_, cached_example): - """Test running everexport with not flags""" - config_path, config_file, _ = cached_example("math_func/config_minimal.yml") - config = EverestConfig.load_file(Path(config_path) / config_file) - export_file_path = config.export_path - assert not os.path.isfile(export_file_path) - - everexport_entry([config_file]) - - assert os.path.isfile(export_file_path) - df = pd.read_csv(export_file_path, sep=";") - assert df.equals(TEST_DATA) - - -@patch("everest.bin.everexport_script.export_with_progress", side_effect=empty_mock) -def test_everexport_entry_empty(mocked_func, cached_example): - """Test running everexport with no data""" - # NOTE: When there is no data (ie, the optimization has not yet run) - # the current behavior is to create an empty .csv file. It is arguable - # whether that is really the desired behavior, but for now we assume - # it is and we test against that expected behavior. - config_path, config_file, _ = cached_example("math_func/config_minimal.yml") - config = EverestConfig.load_file(Path(config_path) / config_file) - export_file_path = config.export_path - assert not os.path.isfile(export_file_path) - - everexport_entry([CONFIG_FILE_MINIMAL]) - - assert os.path.isfile(export_file_path) - with open(export_file_path, encoding="utf-8") as f: - content = f.read() - assert not content.strip() - - -@patch( - "everest.bin.everexport_script.check_for_errors", - side_effect=validate_export_mock, -) -@patch("everest.bin.utils.export_data") -@pytest.mark.skip_mac_ci -def test_everexport_entry_batches(mocked_func, validate_export_mock, cached_example): - """Test running everexport with the --batches flag""" - _, config_file, _ = cached_example("math_func/config_minimal.yml") - everexport_entry([config_file, "--batches", "0", "2"]) - - def check_export_batches(config): - batches = (config.batches if config is not None else None) or False - return set(batches) == {0, 2} - - if ProgressBar: # different calls if ProgressBar available or not - mocked_func.assert_called_once_with( - export_config=satisfy(check_export_batches), - output_dir=satisfy_type(str), - data_file=None, - export_ecl=True, - progress_callback=satisfy_callable(), - ) - else: - mocked_func.assert_called_once() - - -@patch("everest.bin.everexport_script.export_to_csv") -def test_everexport_entry_no_export(mocked_func, cached_example): - """Test running everexport on config file with skip_export flag - set to true""" - - config_path, config_file, _ = cached_example("math_func/config_minimal.yml") - config = EverestConfig.load_file(Path(config_path) / config_file) - config.export = ExportConfig(skip_export=True) - # Add export section to config file and set run_export flag to false - export_file_path = config.export_path - assert not os.path.isfile(export_file_path) - - everexport_entry([CONFIG_FILE_MINIMAL]) - # Check export to csv is called even if the skip_export entry is in the - # config file - mocked_func.assert_called_once() - - -@patch("everest.bin.everexport_script.export_to_csv") -def test_everexport_entry_empty_export(mocked_func, cached_example): - """Test running everexport on config file with empty export section""" - _, config_file, _ = cached_example("math_func/config_minimal.yml") - - # Add empty export section to config file - with open(config_file, "a", encoding="utf-8") as f: - f.write("export:\n") - - everexport_entry([config_file]) - # Check export to csv is called even if export section is empty - mocked_func.assert_called_once() - - -@patch("everest.bin.utils.export_data") -@pytest.mark.skip_mac_ci -def test_everexport_entry_no_usr_def_ecl_keys(mocked_func, cached_example): - """Test running everexport with config file containing only the - keywords label without any list of keys""" - - _, config_file, _ = cached_example( - "../../tests/everest/test_data/mocked_test_case/mocked_multi_batch.yml" - ) - - # Add export section to config file and set run_export flag to false - with open(config_file, "a", encoding="utf-8") as f: - f.write("export:\n keywords:") - - everexport_entry([config_file]) - - def condition(config): - batches = config.batches if config is not None else None - keys = config.keywords if config is not None else None - - return batches is None and keys is None - - if ProgressBar: - mocked_func.assert_called_once_with( - export_config=satisfy(condition), - output_dir=satisfy_type(str), - data_file=satisfy_type(str), - export_ecl=True, - progress_callback=satisfy_callable(), - ) - else: - mocked_func.assert_called_once() - - -@patch("everest.bin.utils.export_data") -@pytest.mark.skip_mac_ci -def test_everexport_entry_internalized_usr_def_ecl_keys(mocked_func, cached_example): - """Test running everexport with config file containing a key in the - list of user defined ecl keywords, that has been internalized on - a previous run""" - - _, config_file, _ = cached_example( - "../../tests/everest/test_data/mocked_test_case/mocked_multi_batch.yml" - ) - user_def_keys = ["FOPT"] - - # Add export section to config file and set run_export flag to false - with open(config_file, "a", encoding="utf-8") as f: - f.write(f"export:\n keywords: {user_def_keys}") - - everexport_entry([config_file]) - - def condition(config): - batches = config.batches if config is not None else None - keys = config.keywords if config is not None else None - - return batches is None and keys == user_def_keys - - if ProgressBar: - mocked_func.assert_called_once_with( - export_config=satisfy(condition), - output_dir=satisfy_type(str), - data_file=satisfy_type(str), - export_ecl=True, - progress_callback=satisfy_callable(), - ) - else: - mocked_func.assert_called_once() - - -@patch("everest.bin.utils.export_data") -@pytest.mark.skip_mac_ci -def test_everexport_entry_non_int_usr_def_ecl_keys(mocked_func, caplog, cached_example): - """Test running everexport when config file contains non internalized - ecl keys in the user defined keywords list""" - - _, config_file, _ = cached_example( - "../../tests/everest/test_data/mocked_test_case/mocked_multi_batch.yml" - ) - - non_internalized_key = "KEY" - user_def_keys = ["FOPT", non_internalized_key] - - # Add export section to config file and set run_export flag to false - with open(config_file, "a", encoding="utf-8") as f: - f.write(f"export:\n keywords: {user_def_keys}") - - with caplog.at_level(logging.DEBUG): - everexport_entry([config_file]) - - assert ( - f"Non-internalized ecl keys selected for export '{non_internalized_key}'" - in "\n".join(caplog.messages) - ) - - def condition(config): - batches = config.batches if config is not None else None - keys = config.keywords if config is not None else None - - return batches is None and keys == user_def_keys - - if ProgressBar: - mocked_func.assert_called_once_with( - export_config=satisfy(condition), - output_dir=satisfy_type(str), - data_file=satisfy_type(str), - export_ecl=False, - progress_callback=satisfy_callable(), - ) - else: - mocked_func.assert_called_once() - - -@patch("everest.bin.utils.export_data") -@pytest.mark.skip_mac_ci -def test_everexport_entry_not_available_batches(mocked_func, caplog, cached_example): - """Test running everexport when config file contains non existing - batch numbers in the list of user defined batches""" - - _, config_file, _ = cached_example( - "../../tests/everest/test_data/mocked_test_case/mocked_multi_batch.yml" - ) - - na_batch = 42 - user_def_batches = [0, na_batch] - - # Add export section to config file and set run_export flag to false - with open(config_file, "a", encoding="utf-8") as f: - f.write(f"export:\n {'batches'}: {user_def_batches}") - - with caplog.at_level(logging.DEBUG): - everexport_entry([config_file]) - - assert ( - f"Batch {na_batch} not found in optimization results." - f" Skipping for current export" in "\n".join(caplog.messages) - ) - - def condition(config): - batches = config.batches if config is not None else None - keys = config.keywords if config is not None else None - return batches == [0] and keys is None - - if ProgressBar: - mocked_func.assert_called_once_with( - export_config=satisfy(condition), - output_dir=satisfy_type(str), - data_file=satisfy_type(str), - export_ecl=True, - progress_callback=satisfy_callable(), - ) - else: - mocked_func.assert_called_once() diff --git a/tests/everest/functional/test_main_everest_entry.py b/tests/everest/functional/test_main_everest_entry.py index 1ec7695a22a..a9e9c55557a 100644 --- a/tests/everest/functional/test_main_everest_entry.py +++ b/tests/everest/functional/test_main_everest_entry.py @@ -1,9 +1,9 @@ import os +from pathlib import Path from textwrap import dedent import pytest from ruamel.yaml import YAML -from seba_sqlite.snapshot import SebaSnapshot from tests.everest.utils import ( capture_streams, skipif_no_everest_models, @@ -13,6 +13,7 @@ from everest.bin.main import start_everest from everest.config import EverestConfig, ServerConfig from everest.detached import ServerStatus, everserver_status +from everest.everest_storage import EverestStorage WELL_ORDER = "everest/model/config.yml" @@ -56,14 +57,15 @@ def test_everest_entry_run(cached_example): assert status["status"] == ServerStatus.completed - snapshot = SebaSnapshot(config.optimization_output_dir).get_snapshot() + storage = EverestStorage(Path(config.optimization_output_dir)) + storage.read_from_output_dir() + optimal = storage.get_optimal_result() - best_settings = snapshot.optimization_data[-1] - assert best_settings.controls["point_x"] == pytest.approx(0.5, abs=0.05) - assert best_settings.controls["point_y"] == pytest.approx(0.5, abs=0.05) - assert best_settings.controls["point_z"] == pytest.approx(0.5, abs=0.05) + assert optimal.controls["point_x"] == pytest.approx(0.5, abs=0.05) + assert optimal.controls["point_y"] == pytest.approx(0.5, abs=0.05) + assert optimal.controls["point_z"] == pytest.approx(0.5, abs=0.05) - assert best_settings.objective_value == pytest.approx(0.0, abs=0.0005) + assert optimal.total_objective == pytest.approx(0.0, abs=0.0005) with capture_streams(): start_everest(["everest", "monitor", config_file]) @@ -94,9 +96,10 @@ def test_everest_entry_monitor_no_run(cached_example): def test_everest_main_export_entry(cached_example): # Setup command line arguments _, config_file, _ = cached_example("math_func/config_minimal.yml") - with capture_streams(): - start_everest(["everest", "export", config_file]) - assert os.path.exists(os.path.join("everest_output", "config_minimal.csv")) + with capture_streams() as (out, _): + start_everest(["everest", "export", str(config_file)]) + + assert "Everexport is deprecated" in out.getvalue() @pytest.mark.integration_test diff --git a/tests/everest/snapshots/test_api_snapshots/test_api_snapshots/config_advanced.yml/snapshot.json b/tests/everest/snapshots/test_api_snapshots/test_api_snapshots/config_advanced.yml/snapshot.json index 1688b80fa25..3d7e4636061 100644 --- a/tests/everest/snapshots/test_api_snapshots/test_api_snapshots/config_advanced.yml/snapshot.json +++ b/tests/everest/snapshots/test_api_snapshots/test_api_snapshots/config_advanced.yml/snapshot.json @@ -331,110 +331,110 @@ { "batch": 0, "function": "distance", - "norm": 1, - "realization": "0", - "simulation": "0", + "norm": 1.0, + "realization": 0, + "simulation": 0, "value": -6.1875, - "weight": 1 + "weight": 1.0 }, { "batch": 0, "function": "distance", - "norm": 1, - "realization": "2", - "simulation": "1", + "norm": 1.0, + "realization": 2, + "simulation": 1, "value": -0.1875, - "weight": 1 + "weight": 1.0 }, { "batch": 1, "function": "distance", - "norm": 1, - "realization": "0", - "simulation": "0", + "norm": 1.0, + "realization": 0, + "simulation": 0, "value": -5.88372993, - "weight": 1 + "weight": 1.0 }, { "batch": 1, "function": "distance", - "norm": 1, - "realization": "2", - "simulation": "1", + "norm": 1.0, + "realization": 2, + "simulation": 1, "value": -0.295847, - "weight": 1 + "weight": 1.0 }, { "batch": 2, "function": "distance", - "norm": 1, - "realization": "0", - "simulation": "0", + "norm": 1.0, + "realization": 0, + "simulation": 0, "value": -5.70665979, - "weight": 1 + "weight": 1.0 }, { "batch": 2, "function": "distance", - "norm": 1, - "realization": "2", - "simulation": "1", + "norm": 1.0, + "realization": 2, + "simulation": 1, "value": -0.411939, - "weight": 1 + "weight": 1.0 }, { "batch": 3, "function": "distance", - "norm": 1, - "realization": "0", - "simulation": "0", + "norm": 1.0, + "realization": 0, + "simulation": 0, "value": -5.43767023, - "weight": 1 + "weight": 1.0 }, { "batch": 3, "function": "distance", - "norm": 1, - "realization": "2", - "simulation": "1", + "norm": 1.0, + "realization": 2, + "simulation": 1, "value": -0.35234299, - "weight": 1 + "weight": 1.0 }, { "batch": 4, "function": "distance", - "norm": 1, - "realization": "0", - "simulation": "0", + "norm": 1.0, + "realization": 0, + "simulation": 0, "value": -4.98070002, - "weight": 1 + "weight": 1.0 }, { "batch": 4, "function": "distance", - "norm": 1, - "realization": "2", - "simulation": "1", + "norm": 1.0, + "realization": 2, + "simulation": 1, "value": -0.39282399, - "weight": 1 + "weight": 1.0 }, { "batch": 5, "function": "distance", - "norm": 1, - "realization": "0", - "simulation": "0", + "norm": 1.0, + "realization": 0, + "simulation": 0, "value": -4.88824987, - "weight": 1 + "weight": 1.0 }, { "batch": 5, "function": "distance", - "norm": 1, - "realization": "2", - "simulation": "1", + "norm": 1.0, + "realization": 2, + "simulation": 1, "value": -0.404742, - "weight": 1 + "weight": 1.0 } ], "optimal_result_json": { diff --git a/tests/everest/snapshots/test_api_snapshots/test_api_snapshots/config_minimal.yml/snapshot.json b/tests/everest/snapshots/test_api_snapshots/test_api_snapshots/config_minimal.yml/snapshot.json index 26f9c6f7072..fc3f92607ad 100644 --- a/tests/everest/snapshots/test_api_snapshots/test_api_snapshots/config_minimal.yml/snapshot.json +++ b/tests/everest/snapshots/test_api_snapshots/test_api_snapshots/config_minimal.yml/snapshot.json @@ -99,29 +99,29 @@ { "batch": 0, "function": "distance", - "norm": 1, - "realization": "0", - "simulation": "0", + "norm": 1.0, + "realization": 0, + "simulation": 0, "value": -0.47999999, - "weight": 1 + "weight": 1.0 }, { "batch": 1, "function": "distance", - "norm": 1, - "realization": "0", - "simulation": "0", + "norm": 1.0, + "realization": 0, + "simulation": 0, "value": -0.48021799, - "weight": 1 + "weight": 1.0 }, { "batch": 2, "function": "distance", - "norm": 1, - "realization": "0", - "simulation": "0", + "norm": 1.0, + "realization": 0, + "simulation": 0, "value": -2.2e-7, - "weight": 1 + "weight": 1.0 } ], "optimal_result_json": { diff --git a/tests/everest/snapshots/test_api_snapshots/test_api_snapshots/config_multiobj.yml/snapshot.json b/tests/everest/snapshots/test_api_snapshots/test_api_snapshots/config_multiobj.yml/snapshot.json index 262b1273e86..36809dae68a 100644 --- a/tests/everest/snapshots/test_api_snapshots/test_api_snapshots/config_multiobj.yml/snapshot.json +++ b/tests/everest/snapshots/test_api_snapshots/test_api_snapshots/config_multiobj.yml/snapshot.json @@ -69,27 +69,27 @@ }, { "batch": 0, - "control": "point_y", - "function": "distance_p", - "value": 0.98866227 + "control": "point_x", + "function": "distance_q", + "value": -3.00456477 }, { "batch": 0, - "control": "point_z", + "control": "point_y", "function": "distance_p", - "value": 1.00465235 + "value": 0.98866227 }, { "batch": 0, - "control": "point_x", + "control": "point_y", "function": "distance_q", - "value": -3.00456477 + "value": -3.011388 }, { "batch": 0, - "control": "point_y", - "function": "distance_q", - "value": -3.011388 + "control": "point_z", + "function": "distance_p", + "value": 1.00465235 }, { "batch": 0, @@ -119,17 +119,17 @@ "batch": 0, "function": "distance_p", "norm": 1.5, - "realization": "0", - "simulation": "0", + "realization": 0, + "simulation": 0, "value": -0.75, "weight": 0.66666667 }, { "batch": 0, "function": "distance_q", - "norm": 1, - "realization": "0", - "simulation": "0", + "norm": 1.0, + "realization": 0, + "simulation": 0, "value": -4.75, "weight": 0.33333333 }, @@ -137,17 +137,17 @@ "batch": 1, "function": "distance_p", "norm": 1.5, - "realization": "0", - "simulation": "0", + "realization": 0, + "simulation": 0, "value": -0.76564598, "weight": 0.66666667 }, { "batch": 1, "function": "distance_q", - "norm": 1, - "realization": "0", - "simulation": "0", + "norm": 1.0, + "realization": 0, + "simulation": 0, "value": -4.70363998, "weight": 0.33333333 }, @@ -155,17 +155,17 @@ "batch": 2, "function": "distance_p", "norm": 1.5, - "realization": "0", - "simulation": "0", + "realization": 0, + "simulation": 0, "value": -0.50778502, "weight": 0.66666667 }, { "batch": 2, "function": "distance_q", - "norm": 1, - "realization": "0", - "simulation": "0", + "norm": 1.0, + "realization": 0, + "simulation": 0, "value": -4.47678995, "weight": 0.33333333 } diff --git a/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_advanced.yml/batch_df.csv b/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_advanced.yml/batch_df.csv new file mode 100644 index 00000000000..782d5e7e247 --- /dev/null +++ b/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_advanced.yml/batch_df.csv @@ -0,0 +1,7 @@ +batch_id,distance,grad(distance wrt point_x-0),grad(distance wrt point_x-1),grad(distance wrt point_x-2),grad(distance.total wrt point_x-0),grad(distance.total wrt point_x-1),grad(distance.total wrt point_x-2),merit_value,point_x-0,point_x-1,point_x-2,total_objective_value,x-0_coord,x-0_coord.violation +0,-1.6875,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,,0.9999923242971123,-0.00002866170271420768,-0.00003482388228645279,-1.6875,0.15,0.0 +1,-1.6928177326917648,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,389.85565356542713,1.0000197666303703,7.318438233973908e-6,0.000054286921875937026,-1.6928177326917648,0.15904500484466552,0.0 +2,-1.735619194805622,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,381.4612304677212,0.9999868957126514,2.561012506432357e-6,0.000025109042352951607,-1.735619194805622,0.21863600015640258,0.0 +3,-1.6236748024821281,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,29.58547833176726,1.0000243522797598,-0.000045940653105887436,7.74341493223104e-6,-1.6236748024821281,0.1411780059337616,0.0 +4,-1.539792999625206,-0.3036942605860327,0.023143745090389523,0.25834193323625815,-0.3036942605860327,0.023143745090389523,0.25834193323625815,13.246954160900696,0.9999717043148817,8.450350216384595e-6,-5.568694767103104e-6,-1.539792999625206,0.050914996862411493,0.0 +5,-1.5256189703941345,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,11.750325264919065,0.9999855616128173,-0.000012794222306632448,3.542883847480084e-7,-1.5256189703941345,0.014527001976966852,0.0 diff --git a/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_advanced.yml/combined_df.csv b/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_advanced.yml/combined_df.csv new file mode 100644 index 00000000000..f5de37cf5d7 --- /dev/null +++ b/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_advanced.yml/combined_df.csv @@ -0,0 +1,97 @@ +batch_distance,batch_id,batch_merit_value,batch_point_x-0,batch_point_x-1,batch_point_x-2,batch_total_objective_value,batch_x-0_coord,batch_x-0_coord.violation,distance,grad(distance wrt point_x-0),grad(distance wrt point_x-1),grad(distance wrt point_x-2),grad(distance.total wrt point_x-0),grad(distance.total wrt point_x-1),grad(distance.total wrt point_x-2),perturbation,point_x-0,point_x-1,point_x-2,realization,simulation_id,x-0_coord +-1.6875,0,,0.9999923242971123,-0.00002866170271420768,-0.00003482388228645279,-1.6875,0.15,0.0,-6.197460174560547,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,0,0.2538282445129496,0.24751682992526736,0.23974638454801972,0,,0.2538279891014099 +-1.6875,0,,0.9999923242971123,-0.00002866170271420768,-0.00003482388228645279,-1.6875,0.15,0.0,-6.19789981842041,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,1,0.24996884704125027,0.25263343360307505,0.24743589567425595,0,,0.2499690055847168 +-1.6875,0,,0.9999923242971123,-0.00002866170271420768,-0.00003482388228645279,-1.6875,0.15,0.0,-6.169020175933838,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,2,0.24853067346762697,0.24651802978838783,0.25233575728243945,0,,0.24853099882602692 +-1.6875,0,,0.9999923242971123,-0.00002866170271420768,-0.00003482388228645279,-1.6875,0.15,0.0,-6.191420078277588,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,3,0.24427056529371927,0.257227541473465,0.2528332936646901,0,,0.24427099525928497 +-1.6875,0,,0.9999923242971123,-0.00002866170271420768,-0.00003482388228645279,-1.6875,0.15,0.0,-6.183549880981445,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,4,0.25064428907515635,0.24940559927105557,0.2583987698188737,0,,0.2506439983844757 +-1.6875,0,,0.9999923242971123,-0.00002866170271420768,-0.00003482388228645279,-1.6875,0.15,0.0,-6.184549808502197,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,5,0.25233078500059897,0.24692465946025546,0.2507099278587647,0,,0.2523309886455536 +-1.6875,0,,0.9999923242971123,-0.00002866170271420768,-0.00003482388228645279,-1.6875,0.15,0.0,-6.181550025939941,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,6,0.2533854909392576,0.2455173082525516,0.254310745296117,0,,0.2533850073814392 +-1.6875,0,,0.9999923242971123,-0.00002866170271420768,-0.00003482388228645279,-1.6875,0.15,0.0,-6.1875,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,,0.25,0.25,0.25,0,0,0.25 +-1.6875,0,,0.9999923242971123,-0.00002866170271420768,-0.00003482388228645279,-1.6875,0.15,0.0,-0.18681800365447998,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,0,0.24891705141130827,0.25170502936248174,0.2507520468140412,2,,0.24891699850559235 +-1.6875,0,,0.9999923242971123,-0.00002866170271420768,-0.00003482388228645279,-1.6875,0.15,0.0,-0.19171500205993652,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,1,0.24112341266495635,0.2473797852156759,0.2532584880164769,2,,0.2411230057477951 +-1.6875,0,,0.9999923242971123,-0.00002866170271420768,-0.00003482388228645279,-1.6875,0.15,0.0,-0.19468000531196594,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,2,0.24004521047088506,0.24332112203760028,0.25257478859256477,2,,0.2400449961423874 +-1.6875,0,,0.9999923242971123,-0.00002866170271420768,-0.00003482388228645279,-1.6875,0.15,0.0,-0.19212499260902405,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,3,0.24797780812566625,0.2501534069509484,0.24273244684555634,2,,0.24797800183296204 +-1.6875,0,,0.9999923242971123,-0.00002866170271420768,-0.00003482388228645279,-1.6875,0.15,0.0,-0.1874600052833557,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,4,0.24881410570943727,0.25109723900234254,0.2501731952109936,2,,0.24881400167942047 +-1.6875,0,,0.9999923242971123,-0.00002866170271420768,-0.00003482388228645279,-1.6875,0.15,0.0,-0.1893409937620163,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,5,0.24507517797106243,0.25649255875564,0.24493403841104802,2,,0.24507500231266022 +-1.6875,0,,0.9999923242971123,-0.00002866170271420768,-0.00003482388228645279,-1.6875,0.15,0.0,-0.188851997256279,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,6,0.24614902545790798,0.25827439594258517,0.24313271902489014,2,,0.2461490035057068 +-1.6875,0,,0.9999923242971123,-0.00002866170271420768,-0.00003482388228645279,-1.6875,0.15,0.0,-0.1875,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,-0.4907662687030493,-0.5019101422144723,0.5042454858798938,,0.25,0.25,0.25,2,1,0.25 +-1.6928177326917648,1,389.85565356542713,1.0000197666303703,7.318438233973908e-6,0.000054286921875937026,-1.6928177326917648,0.15904500484466552,0.0,-5.8940300941467285,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,0,0.26158543248374305,0.13719469483849434,0.1676756047777897,0,,0.261584997177124 +-1.6928177326917648,1,389.85565356542713,1.0000197666303703,7.318438233973908e-6,0.000054286921875937026,-1.6928177326917648,0.15904500484466552,0.0,-5.912670135498047,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,1,0.2622518405969814,0.1441728278553871,0.1777642830233687,0,,0.26225200295448303 +-1.6928177326917648,1,389.85565356542713,1.0000197666303703,7.318438233973908e-6,0.000054286921875937026,-1.6928177326917648,0.15904500484466552,0.0,-5.8881001472473145,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,2,0.26150667354504914,0.137099323208658,0.17581380191538656,0,,0.2615070044994354 +-1.6928177326917648,1,389.85565356542713,1.0000197666303703,7.318438233973908e-6,0.000054286921875937026,-1.6928177326917648,0.15904500484466552,0.0,-5.858560085296631,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,3,0.24948947627686166,0.13854778288624708,0.16382635694755665,0,,0.24948899447917938 +-1.6928177326917648,1,389.85565356542713,1.0000197666303703,7.318438233973908e-6,0.000054286921875937026,-1.6928177326917648,0.15904500484466552,0.0,-5.889369964599609,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,4,0.2565544173547456,0.14335478548652905,0.178644231369294,0,,0.2565540075302124 +-1.6928177326917648,1,389.85565356542713,1.0000197666303703,7.318438233973908e-6,0.000054286921875937026,-1.6928177326917648,0.15904500484466552,0.0,-5.904640197753906,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,5,0.2601795112395452,0.14267508221910477,0.17133066964140212,0,,0.2601799964904785 +-1.6928177326917648,1,389.85565356542713,1.0000197666303703,7.318438233973908e-6,0.000054286921875937026,-1.6928177326917648,0.15904500484466552,0.0,-5.866819858551025,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,6,0.25547331489905817,0.13791306486388624,0.18003458940554276,0,,0.25547298789024353 +-1.6928177326917648,1,389.85565356542713,1.0000197666303703,7.318438233973908e-6,0.000054286921875937026,-1.6928177326917648,0.15904500484466552,0.0,-5.883729934692383,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,,0.25904477644614066,0.13792474548464598,0.17336686872496682,0,0,0.2590450048446655 +-1.6928177326917648,1,389.85565356542713,1.0000197666303703,7.318438233973908e-6,0.000054286921875937026,-1.6928177326917648,0.15904500484466552,0.0,-0.2972089946269989,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,0,0.25658814590130097,0.13485297683357025,0.17653845640923607,2,,0.25658801198005676 +-1.6928177326917648,1,389.85565356542713,1.0000197666303703,7.318438233973908e-6,0.000054286921875937026,-1.6928177326917648,0.15904500484466552,0.0,-0.29766198992729187,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,1,0.2618323535423378,0.13383588580910302,0.17310319915860797,2,,0.26183199882507324 +-1.6928177326917648,1,389.85565356542713,1.0000197666303703,7.318438233973908e-6,0.000054286921875937026,-1.6928177326917648,0.15904500484466552,0.0,-0.29823899269104004,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,2,0.2551159359491863,0.1400143844831577,0.17033107540680115,2,,0.25511598587036133 +-1.6928177326917648,1,389.85565356542713,1.0000197666303703,7.318438233973908e-6,0.000054286921875937026,-1.6928177326917648,0.15904500484466552,0.0,-0.28824400901794434,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,3,0.2704497810285817,0.14248156525180106,0.17177507831474256,2,,0.27044999599456787 +-1.6928177326917648,1,389.85565356542713,1.0000197666303703,7.318438233973908e-6,0.000054286921875937026,-1.6928177326917648,0.15904500484466552,0.0,-0.2948099970817566,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,4,0.258134211220568,0.144063029403765,0.1689114657731887,2,,0.25813400745391846 +-1.6928177326917648,1,389.85565356542713,1.0000197666303703,7.318438233973908e-6,0.000054286921875937026,-1.6928177326917648,0.15904500484466552,0.0,-0.2939769923686981,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,5,0.2610305161642206,0.13339431378390038,0.1798885305533749,2,,0.26103100180625916 +-1.6928177326917648,1,389.85565356542713,1.0000197666303703,7.318438233973908e-6,0.000054286921875937026,-1.6928177326917648,0.15904500484466552,0.0,-0.29472699761390686,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,6,0.2580754869383809,0.14192120574198774,0.17139818743858917,2,,0.2580749988555908 +-1.6928177326917648,1,389.85565356542713,1.0000197666303703,7.318438233973908e-6,0.000054286921875937026,-1.6928177326917648,0.15904500484466552,0.0,-0.29584699869155884,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,-0.5220932558524333,-0.2857933053410886,0.6486969102170087,,0.25904477644614066,0.13792474548464598,0.17336686872496682,2,1,0.2590450048446655 +-1.735619194805622,2,381.4612304677212,0.9999868957126514,2.561012506432357e-6,0.000025109042352951607,-1.735619194805622,0.21863600015640258,0.0,-5.745009899139404,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,0,0.32450047958939554,0.010437790397414515,0.13286707632894246,0,,0.3244999945163727 +-1.735619194805622,2,381.4612304677212,0.9999868957126514,2.561012506432357e-6,0.000025109042352951607,-1.735619194805622,0.21863600015640258,0.0,-5.733150005340576,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,1,0.3210046474773994,0.010955721011408771,0.13379138328092297,0,,0.3210049867630005 +-1.735619194805622,2,381.4612304677212,0.9999868957126514,2.561012506432357e-6,0.000025109042352951607,-1.735619194805622,0.21863600015640258,0.0,-5.688630104064941,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,2,0.3138003824755716,0.004266072887502807,0.1312942760134386,0,,0.31380000710487366 +-1.735619194805622,2,381.4612304677212,0.9999868957126514,2.561012506432357e-6,0.000025109042352951607,-1.735619194805622,0.21863600015640258,0.0,-5.690569877624512,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,3,0.3129085242254171,0.006570194939578675,0.13369305771699666,0,,0.31290900707244873 +-1.735619194805622,2,381.4612304677212,0.9999868957126514,2.561012506432357e-6,0.000025109042352951607,-1.735619194805622,0.21863600015640258,0.0,-5.7047600746154785,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,4,0.31539536959008435,0.009695670583017908,0.1395579343344885,0,,0.3153949975967407 +-1.735619194805622,2,381.4612304677212,0.9999868957126514,2.561012506432357e-6,0.000025109042352951607,-1.735619194805622,0.21863600015640258,0.0,-5.716519832611084,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,5,0.3232728552728336,0.004378633139992187,0.14077116096332143,0,,0.3232730031013489 +-1.735619194805622,2,381.4612304677212,0.9999868957126514,2.561012506432357e-6,0.000025109042352951607,-1.735619194805622,0.21863600015640258,0.0,-5.740789890289307,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,6,0.3255426455943511,0.00865807537371361,0.13649589535277262,0,,0.32554298639297485 +-1.735619194805622,2,381.4612304677212,0.9999868957126514,2.561012506432357e-6,0.000025109042352951607,-1.735619194805622,0.21863600015640258,0.0,-5.70665979385376,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,,0.318635680221242,0.005043583113943484,0.13385208967902779,0,0,0.3186360001564026 +-1.735619194805622,2,381.4612304677212,0.9999868957126514,2.561012506432357e-6,0.000025109042352951607,-1.735619194805622,0.21863600015640258,0.0,-0.40727901458740234,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,0,0.32239626011003664,0.006764260256699326,0.13605768290177894,2,,0.32239601016044617 +-1.735619194805622,2,381.4612304677212,0.9999868957126514,2.561012506432357e-6,0.000025109042352951607,-1.735619194805622,0.21863600015640258,0.0,-0.4073520004749298,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,1,0.32364153530122564,0.0038603002407162417,0.13931313844257648,2,,0.32364198565483093 +-1.735619194805622,2,381.4612304677212,0.9999868957126514,2.561012506432357e-6,0.000025109042352951607,-1.735619194805622,0.21863600015640258,0.0,-0.4140219986438751,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,2,0.3268948427377707,0.002527483047986523,0.13043543468309848,2,,0.32689499855041504 +-1.735619194805622,2,381.4612304677212,0.9999868957126514,2.561012506432357e-6,0.000025109042352951607,-1.735619194805622,0.21863600015640258,0.0,-0.4122529923915863,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,3,0.31837288754278564,0.00047854661434324625,0.13980093294258084,2,,0.3183729946613312 +-1.735619194805622,2,381.4612304677212,0.9999868957126514,2.561012506432357e-6,0.000025109042352951607,-1.735619194805622,0.21863600015640258,0.0,-0.4138700067996979,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,4,0.3240077939508779,-0.0004900078041233978,0.136123617847997,2,,0.3240079879760742 +-1.735619194805622,2,381.4612304677212,0.9999868957126514,2.561012506432357e-6,0.000025109042352951607,-1.735619194805622,0.21863600015640258,0.0,-0.42032501101493835,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,5,0.318889359696296,0.0016014970673613148,0.1270086861866544,2,,0.31888899207115173 +-1.735619194805622,2,381.4612304677212,0.9999868957126514,2.561012506432357e-6,0.000025109042352951607,-1.735619194805622,0.21863600015640258,0.0,-0.4125779867172241,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,6,0.31914819367304537,0.006537491087895708,0.1307237355472078,2,,0.3191480040550232 +-1.735619194805622,2,381.4612304677212,0.9999868957126514,2.561012506432357e-6,0.000025109042352951607,-1.735619194805622,0.21863600015640258,0.0,-0.41193899512290955,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,-0.6428129143568377,-0.005219520850941156,0.7315266224689232,,0.318635680221242,0.005043583113943484,0.13385208967902779,2,1,0.3186360001564026 +-1.6236748024821281,3,29.58547833176726,1.0000243522797598,-0.000045940653105887436,7.74341493223104e-6,-1.6236748024821281,0.1411780059337616,0.0,-5.428890228271484,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,0,0.24063767815682807,0.02877703812125906,0.25117114314361677,0,,0.24063800275325775 +-1.6236748024821281,3,29.58547833176726,1.0000243522797598,-0.000045940653105887436,7.74341493223104e-6,-1.6236748024821281,0.1411780059337616,0.0,-5.457699775695801,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,1,0.24633308091442252,0.03012875661791404,0.24168468969129217,0,,0.24633300304412842 +-1.6236748024821281,3,29.58547833176726,1.0000243522797598,-0.000045940653105887436,7.74341493223104e-6,-1.6236748024821281,0.1411780059337616,0.0,-5.469550132751465,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,2,0.24384090811790385,0.03783069593766479,0.24771590795610338,0,,0.2438410073518753 +-1.6236748024821281,3,29.58547833176726,1.0000243522797598,-0.000045940653105887436,7.74341493223104e-6,-1.6236748024821281,0.1411780059337616,0.0,-5.456470012664795,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,3,0.2427207933145005,0.03367211120134591,0.24069321791836612,0,,0.24272100627422333 +-1.6236748024821281,3,29.58547833176726,1.0000243522797598,-0.000045940653105887436,7.74341493223104e-6,-1.6236748024821281,0.1411780059337616,0.0,-5.45451021194458,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,4,0.24615732265785062,0.029976468933687717,0.24581176032659666,0,,0.24615700542926788 +-1.6236748024821281,3,29.58547833176726,1.0000243522797598,-0.000045940653105887436,7.74341493223104e-6,-1.6236748024821281,0.1411780059337616,0.0,-5.419899940490723,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,5,0.2355276424639093,0.031005058554380818,0.2472750376213166,0,,0.23552800714969635 +-1.6236748024821281,3,29.58547833176726,1.0000243522797598,-0.000045940653105887436,7.74341493223104e-6,-1.6236748024821281,0.1411780059337616,0.0,-5.421879768371582,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,6,0.23301678514643498,0.03239838429174943,0.23487621138945652,0,,0.2330169975757599 +-1.6236748024821281,3,29.58547833176726,1.0000243522797598,-0.000045940653105887436,7.74341493223104e-6,-1.6236748024821281,0.1411780059337616,0.0,-5.4376702308654785,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,,0.24117770577354097,0.03015417457053943,0.24583775670130603,0,0,0.2411780059337616 +-1.6236748024821281,3,29.58547833176726,1.0000243522797598,-0.000045940653105887436,7.74341493223104e-6,-1.6236748024821281,0.1411780059337616,0.0,-0.35022398829460144,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,0,0.24177261417996185,0.03152483948919899,0.24687256531170348,2,,0.24177299439907074 +-1.6236748024821281,3,29.58547833176726,1.0000243522797598,-0.000045940653105887436,7.74341493223104e-6,-1.6236748024821281,0.1411780059337616,0.0,-0.3472839891910553,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,1,0.24012893149783082,0.03275272407179748,0.252146861626334,2,,0.2401289939880371 +-1.6236748024821281,3,29.58547833176726,1.0000243522797598,-0.000045940653105887436,7.74341493223104e-6,-1.6236748024821281,0.1411780059337616,0.0,-0.34878599643707275,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,2,0.24597088930249664,0.03503409214179188,0.23911344740952756,2,,0.24597099423408508 +-1.6236748024821281,3,29.58547833176726,1.0000243522797598,-0.000045940653105887436,7.74341493223104e-6,-1.6236748024821281,0.1411780059337616,0.0,-0.3579150140285492,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,3,0.23830076575333395,0.03349113372514329,0.2320491793732321,2,,0.23830099403858185 +-1.6236748024821281,3,29.58547833176726,1.0000243522797598,-0.000045940653105887436,7.74341493223104e-6,-1.6236748024821281,0.1411780059337616,0.0,-0.35530900955200195,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,4,0.2380903244902813,0.03046561130376226,0.24260987401540227,2,,0.23808999359607697 +-1.6236748024821281,3,29.58547833176726,1.0000243522797598,-0.000045940653105887436,7.74341493223104e-6,-1.6236748024821281,0.1411780059337616,0.0,-0.3470650017261505,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,5,0.24436667982447785,0.03434158591796368,0.2452868513471796,2,,0.24436700344085693 +-1.6236748024821281,3,29.58547833176726,1.0000243522797598,-0.000045940653105887436,7.74341493223104e-6,-1.6236748024821281,0.1411780059337616,0.0,-0.3525660037994385,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,6,0.2440280069635093,0.03410303245204604,0.2354549492417755,2,,0.2440280020236969 +-1.6236748024821281,3,29.58547833176726,1.0000243522797598,-0.000045940653105887436,7.74341493223104e-6,-1.6236748024821281,0.1411780059337616,0.0,-0.35234299302101135,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,-0.4727620137163322,-0.07854769964884697,0.5153976529252893,,0.24117770577354097,0.03015417457053943,0.24583775670130603,2,1,0.2411780059337616 +-1.539792999625206,4,13.246954160900696,0.9999717043148817,8.450350216384595e-6,-5.568694767103104e-6,-1.539792999625206,0.050914996862411493,0.0,-4.967840194702148,-0.3036942605860327,0.023143745090389523,0.25834193323625815,-0.3036942605860327,0.023143745090389523,0.25834193323625815,0,0.14917266601153392,-0.00638174123699721,0.3689685876960334,0,,0.14917300641536713 +-1.539792999625206,4,13.246954160900696,0.9999717043148817,8.450350216384595e-6,-5.568694767103104e-6,-1.539792999625206,0.050914996862411493,0.0,-4.970550060272217,-0.3036942605860327,0.023143745090389523,0.25834193323625815,-0.3036942605860327,0.023143745090389523,0.25834193323625815,1,0.14892255168087487,-0.004645336329455029,0.3754214148067227,0,,0.14892299473285675 +-1.539792999625206,4,13.246954160900696,0.9999717043148817,8.450350216384595e-6,-5.568694767103104e-6,-1.539792999625206,0.050914996862411493,0.0,-4.998370170593262,-0.3036942605860327,0.023143745090389523,0.25834193323625815,-0.3036942605860327,0.023143745090389523,0.25834193323625815,2,0.1548419189154325,-0.00210951916874826,0.37276727660127,0,,0.15484200417995453 +-1.539792999625206,4,13.246954160900696,0.9999717043148817,8.450350216384595e-6,-5.568694767103104e-6,-1.539792999625206,0.050914996862411493,0.0,-4.969940185546875,-0.3036942605860327,0.023143745090389523,0.25834193323625815,-0.3036942605860327,0.023143745090389523,0.25834193323625815,3,0.146430556007128,-0.0029496538319187544,0.36567548649636217,0,,0.14643099904060364 +-1.539792999625206,4,13.246954160900696,0.9999717043148817,8.450350216384595e-6,-5.568694767103104e-6,-1.539792999625206,0.050914996862411493,0.0,-4.962540149688721,-0.3036942605860327,0.023143745090389523,0.25834193323625815,-0.3036942605860327,0.023143745090389523,0.25834193323625815,4,0.14613864490767545,-0.00473262765882337,0.3698385875678906,0,,0.146138995885849 +-1.539792999625206,4,13.246954160900696,0.9999717043148817,8.450350216384595e-6,-5.568694767103104e-6,-1.539792999625206,0.050914996862411493,0.0,-4.971149921417236,-0.3036942605860327,0.023143745090389523,0.25834193323625815,-0.3036942605860327,0.023143745090389523,0.25834193323625815,5,0.14932696534028084,-0.005239941350406197,0.3713078828299389,0,,0.14932699501514435 +-1.539792999625206,4,13.246954160900696,0.9999717043148817,8.450350216384595e-6,-5.568694767103104e-6,-1.539792999625206,0.050914996862411493,0.0,-5.003389835357666,-0.3036942605860327,0.023143745090389523,0.25834193323625815,-0.3036942605860327,0.023143745090389523,0.25834193323625815,6,0.16083081730024756,-0.007108373557399144,0.3723111084719605,0,,0.1608310043811798 +-1.539792999625206,4,13.246954160900696,0.9999717043148817,8.450350216384595e-6,-5.568694767103104e-6,-1.539792999625206,0.050914996862411493,0.0,-4.9807000160217285,-0.3036942605860327,0.023143745090389523,0.25834193323625815,-0.3036942605860327,0.023143745090389523,0.25834193323625815,,0.15091481023253867,-0.003946108358643573,0.36960914231895714,0,0,0.1509149968624115 +-1.539792999625206,4,13.246954160900696,0.9999717043148817,8.450350216384595e-6,-5.568694767103104e-6,-1.539792999625206,0.050914996862411493,0.0,-0.3928680121898651,-0.3036942605860327,0.023143745090389523,0.25834193323625815,-0.3036942605860327,0.023143745090389523,0.25834193323625815,0,0.15621745854324237,-0.0061562124641489045,0.3640330006921374,2,,0.15621699392795563 +-1.539792999625206,4,13.246954160900696,0.9999717043148817,8.450350216384595e-6,-5.568694767103104e-6,-1.539792999625206,0.050914996862411493,0.0,-0.39197900891304016,-0.3036942605860327,0.023143745090389523,0.25834193323625815,-0.3036942605860327,0.023143745090389523,0.25834193323625815,1,0.1519285470691897,-0.005568127541079658,0.3766038341309674,2,,0.15192900598049164 +-1.539792999625206,4,13.246954160900696,0.9999717043148817,8.450350216384595e-6,-5.568694767103104e-6,-1.539792999625206,0.050914996862411493,0.0,-0.39074400067329407,-0.3036942605860327,0.023143745090389523,0.25834193323625815,-0.3036942605860327,0.023143745090389523,0.25834193323625815,2,0.1502672893009864,-0.0026641619275341016,0.37446331163886276,2,,0.15026700496673584 +-1.539792999625206,4,13.246954160900696,0.9999717043148817,8.450350216384595e-6,-5.568694767103104e-6,-1.539792999625206,0.050914996862411493,0.0,-0.40393099188804626,-0.3036942605860327,0.023143745090389523,0.25834193323625815,-0.3036942605860327,0.023143745090389523,0.25834193323625815,3,0.14389754519742287,-0.008875208347373108,0.3652095156761837,2,,0.14389799535274506 +-1.539792999625206,4,13.246954160900696,0.9999717043148817,8.450350216384595e-6,-5.568694767103104e-6,-1.539792999625206,0.050914996862411493,0.0,-0.3903779983520508,-0.3036942605860327,0.023143745090389523,0.25834193323625815,-0.3036942605860327,0.023143745090389523,0.25834193323625815,4,0.15005624033450726,-0.0017400901188599407,0.372822288364217,2,,0.15005600452423096 +-1.539792999625206,4,13.246954160900696,0.9999717043148817,8.450350216384595e-6,-5.568694767103104e-6,-1.539792999625206,0.050914996862411493,0.0,-0.4025590121746063,-0.3036942605860327,0.023143745090389523,0.25834193323625815,-0.3036942605860327,0.023143745090389523,0.25834193323625815,5,0.1452941148967355,-0.010954745335788576,0.3748264871836874,2,,0.14529399573802948 +-1.539792999625206,4,13.246954160900696,0.9999717043148817,8.450350216384595e-6,-5.568694767103104e-6,-1.539792999625206,0.050914996862411493,0.0,-0.38984400033950806,-0.3036942605860327,0.023143745090389523,0.25834193323625815,-0.3036942605860327,0.023143745090389523,0.25834193323625815,6,0.15655388542136298,-0.005170168245301561,0.37080109487115387,2,,0.15655399858951569 +-1.539792999625206,4,13.246954160900696,0.9999717043148817,8.450350216384595e-6,-5.568694767103104e-6,-1.539792999625206,0.050914996862411493,0.0,-0.3928239941596985,-0.3036942605860327,0.023143745090389523,0.25834193323625815,-0.3036942605860327,0.023143745090389523,0.25834193323625815,,0.15091481023253867,-0.003946108358643573,0.36960914231895714,2,1,0.1509149968624115 +-1.5256189703941345,5,11.750325264919065,0.9999855616128173,-0.000012794222306632448,3.542883847480084e-7,-1.5256189703941345,0.014527001976966852,0.0,-4.8524298667907715,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,0,0.1011688789930783,0.008018011539079597,0.37928620695704135,0,,0.10116899758577347 +-1.5256189703941345,5,11.750325264919065,0.9999855616128173,-0.000012794222306632448,3.542883847480084e-7,-1.5256189703941345,0.014527001976966852,0.0,-4.861400127410889,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,1,0.10493158876959537,0.007460193886069831,0.3853005207437543,0,,0.10493200272321701 +-1.5256189703941345,5,11.750325264919065,0.9999855616128173,-0.000012794222306632448,3.542883847480084e-7,-1.5256189703941345,0.014527001976966852,0.0,-4.880129814147949,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,2,0.11602249764067625,0.0022782313765918856,0.39155722348740224,0,,0.11602199822664261 +-1.5256189703941345,5,11.750325264919065,0.9999855616128173,-0.000012794222306632448,3.542883847480084e-7,-1.5256189703941345,0.014527001976966852,0.0,-4.911220073699951,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,3,0.12024038761477726,0.007853740317708765,0.3885495952645418,0,,0.12024000287055969 +-1.5256189703941345,5,11.750325264919065,0.9999855616128173,-0.000012794222306632448,3.542883847480084e-7,-1.5256189703941345,0.014527001976966852,0.0,-4.894509792327881,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,4,0.1182800841305407,0.004764143807189761,0.3934089120054798,0,,0.11828000098466873 +-1.5256189703941345,5,11.750325264919065,0.9999855616128173,-0.000012794222306632448,3.542883847480084e-7,-1.5256189703941345,0.014527001976966852,0.0,-4.916130065917969,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,5,0.12069549615436609,0.008659311765472296,0.38415705232672487,0,,0.12069500237703323 +-1.5256189703941345,5,11.750325264919065,0.9999855616128173,-0.000012794222306632448,3.542883847480084e-7,-1.5256189703941345,0.014527001976966852,0.0,-4.902530193328857,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,6,0.11431479763777629,0.011895796683041221,0.3966324932474122,0,,0.11431500315666199 +-1.5256189703941345,5,11.750325264919065,0.9999855616128173,-0.000012794222306632448,3.542883847480084e-7,-1.5256189703941345,0.014527001976966852,0.0,-4.88824987411499,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,,0.1145273043634697,0.006350289737514782,0.38836368561466683,0,0,0.11452700197696686 +-1.5256189703941345,5,11.750325264919065,0.9999855616128173,-0.000012794222306632448,3.542883847480084e-7,-1.5256189703941345,0.014527001976966852,0.0,-0.4019719958305359,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,0,0.11558719795210244,0.0065630593616937795,0.39646854926791947,2,,0.11558700352907181 +-1.5256189703941345,5,11.750325264919065,0.9999855616128173,-0.000012794222306632448,3.542883847480084e-7,-1.5256189703941345,0.014527001976966852,0.0,-0.40303799510002136,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,1,0.1181308951963564,0.00545356323139666,0.38758111058523614,2,,0.11813099682331085 +-1.5256189703941345,5,11.750325264919065,0.9999855616128173,-0.000012794222306632448,3.542883847480084e-7,-1.5256189703941345,0.014527001976966852,0.0,-0.4145840108394623,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,2,0.09957889932570717,0.009318386108094035,0.3839029505914658,2,,0.09957890212535858 +-1.5256189703941345,5,11.750325264919065,0.9999855616128173,-0.000012794222306632448,3.542883847480084e-7,-1.5256189703941345,0.014527001976966852,0.0,-0.40852800011634827,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,3,0.11119556684856131,0.005617882479955788,0.3862226765697461,2,,0.11119599640369415 +-1.5256189703941345,5,11.750325264919065,0.9999855616128173,-0.000012794222306632448,3.542883847480084e-7,-1.5256189703941345,0.014527001976966852,0.0,-0.40870800614356995,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,4,0.1201700931549575,-0.002155060703194175,0.3891943012789269,2,,0.120169997215271 +-1.5256189703941345,5,11.750325264919065,0.9999855616128173,-0.000012794222306632448,3.542883847480084e-7,-1.5256189703941345,0.014527001976966852,0.0,-0.4059869945049286,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,5,0.12089068538768567,0.00008388947054333191,0.38888299206580124,2,,0.12089099735021591 +-1.5256189703941345,5,11.750325264919065,0.9999855616128173,-0.000012794222306632448,3.542883847480084e-7,-1.5256189703941345,0.014527001976966852,0.0,-0.39641299843788147,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,6,0.11997092073359802,0.010030152287461448,0.3908171013997869,2,,0.11997099965810776 +-1.5256189703941345,5,11.750325264919065,0.9999855616128173,-0.000012794222306632448,3.542883847480084e-7,-1.5256189703941345,0.014527001976966852,0.0,-0.4047420024871826,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,-0.21656121993381236,-0.005788275557673861,0.21722039756315908,,0.1145273043634697,0.006350289737514782,0.38836368561466683,2,1,0.11452700197696686 diff --git a/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_advanced.yml/pert_real_df.csv b/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_advanced.yml/pert_real_df.csv new file mode 100644 index 00000000000..0fbac5575d4 --- /dev/null +++ b/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_advanced.yml/pert_real_df.csv @@ -0,0 +1,97 @@ +batch_id,distance,perturbation,point_x-0,point_x-1,point_x-2,realization,simulation_id,x-0_coord +0,-6.1875,,0.25,0.25,0.25,0,0,0.25 +0,-6.197460174560547,0,0.2538282445129496,0.24751682992526736,0.23974638454801972,0,,0.2538279891014099 +0,-6.19789981842041,1,0.24996884704125027,0.25263343360307505,0.24743589567425595,0,,0.2499690055847168 +0,-6.169020175933838,2,0.24853067346762697,0.24651802978838783,0.25233575728243945,0,,0.24853099882602692 +0,-6.191420078277588,3,0.24427056529371927,0.257227541473465,0.2528332936646901,0,,0.24427099525928497 +0,-6.183549880981445,4,0.25064428907515635,0.24940559927105557,0.2583987698188737,0,,0.2506439983844757 +0,-6.184549808502197,5,0.25233078500059897,0.24692465946025546,0.2507099278587647,0,,0.2523309886455536 +0,-6.181550025939941,6,0.2533854909392576,0.2455173082525516,0.254310745296117,0,,0.2533850073814392 +0,-0.1875,,0.25,0.25,0.25,2,1,0.25 +0,-0.18681800365447998,0,0.24891705141130827,0.25170502936248174,0.2507520468140412,2,,0.24891699850559235 +0,-0.19171500205993652,1,0.24112341266495635,0.2473797852156759,0.2532584880164769,2,,0.2411230057477951 +0,-0.19468000531196594,2,0.24004521047088506,0.24332112203760028,0.25257478859256477,2,,0.2400449961423874 +0,-0.19212499260902405,3,0.24797780812566625,0.2501534069509484,0.24273244684555634,2,,0.24797800183296204 +0,-0.1874600052833557,4,0.24881410570943727,0.25109723900234254,0.2501731952109936,2,,0.24881400167942047 +0,-0.1893409937620163,5,0.24507517797106243,0.25649255875564,0.24493403841104802,2,,0.24507500231266022 +0,-0.188851997256279,6,0.24614902545790798,0.25827439594258517,0.24313271902489014,2,,0.2461490035057068 +1,-5.883729934692383,,0.25904477644614066,0.13792474548464598,0.17336686872496682,0,0,0.2590450048446655 +1,-5.8940300941467285,0,0.26158543248374305,0.13719469483849434,0.1676756047777897,0,,0.261584997177124 +1,-5.912670135498047,1,0.2622518405969814,0.1441728278553871,0.1777642830233687,0,,0.26225200295448303 +1,-5.8881001472473145,2,0.26150667354504914,0.137099323208658,0.17581380191538656,0,,0.2615070044994354 +1,-5.858560085296631,3,0.24948947627686166,0.13854778288624708,0.16382635694755665,0,,0.24948899447917938 +1,-5.889369964599609,4,0.2565544173547456,0.14335478548652905,0.178644231369294,0,,0.2565540075302124 +1,-5.904640197753906,5,0.2601795112395452,0.14267508221910477,0.17133066964140212,0,,0.2601799964904785 +1,-5.866819858551025,6,0.25547331489905817,0.13791306486388624,0.18003458940554276,0,,0.25547298789024353 +1,-0.29584699869155884,,0.25904477644614066,0.13792474548464598,0.17336686872496682,2,1,0.2590450048446655 +1,-0.2972089946269989,0,0.25658814590130097,0.13485297683357025,0.17653845640923607,2,,0.25658801198005676 +1,-0.29766198992729187,1,0.2618323535423378,0.13383588580910302,0.17310319915860797,2,,0.26183199882507324 +1,-0.29823899269104004,2,0.2551159359491863,0.1400143844831577,0.17033107540680115,2,,0.25511598587036133 +1,-0.28824400901794434,3,0.2704497810285817,0.14248156525180106,0.17177507831474256,2,,0.27044999599456787 +1,-0.2948099970817566,4,0.258134211220568,0.144063029403765,0.1689114657731887,2,,0.25813400745391846 +1,-0.2939769923686981,5,0.2610305161642206,0.13339431378390038,0.1798885305533749,2,,0.26103100180625916 +1,-0.29472699761390686,6,0.2580754869383809,0.14192120574198774,0.17139818743858917,2,,0.2580749988555908 +2,-5.70665979385376,,0.318635680221242,0.005043583113943484,0.13385208967902779,0,0,0.3186360001564026 +2,-5.745009899139404,0,0.32450047958939554,0.010437790397414515,0.13286707632894246,0,,0.3244999945163727 +2,-5.733150005340576,1,0.3210046474773994,0.010955721011408771,0.13379138328092297,0,,0.3210049867630005 +2,-5.688630104064941,2,0.3138003824755716,0.004266072887502807,0.1312942760134386,0,,0.31380000710487366 +2,-5.690569877624512,3,0.3129085242254171,0.006570194939578675,0.13369305771699666,0,,0.31290900707244873 +2,-5.7047600746154785,4,0.31539536959008435,0.009695670583017908,0.1395579343344885,0,,0.3153949975967407 +2,-5.716519832611084,5,0.3232728552728336,0.004378633139992187,0.14077116096332143,0,,0.3232730031013489 +2,-5.740789890289307,6,0.3255426455943511,0.00865807537371361,0.13649589535277262,0,,0.32554298639297485 +2,-0.41193899512290955,,0.318635680221242,0.005043583113943484,0.13385208967902779,2,1,0.3186360001564026 +2,-0.40727901458740234,0,0.32239626011003664,0.006764260256699326,0.13605768290177894,2,,0.32239601016044617 +2,-0.4073520004749298,1,0.32364153530122564,0.0038603002407162417,0.13931313844257648,2,,0.32364198565483093 +2,-0.4140219986438751,2,0.3268948427377707,0.002527483047986523,0.13043543468309848,2,,0.32689499855041504 +2,-0.4122529923915863,3,0.31837288754278564,0.00047854661434324625,0.13980093294258084,2,,0.3183729946613312 +2,-0.4138700067996979,4,0.3240077939508779,-0.0004900078041233978,0.136123617847997,2,,0.3240079879760742 +2,-0.42032501101493835,5,0.318889359696296,0.0016014970673613148,0.1270086861866544,2,,0.31888899207115173 +2,-0.4125779867172241,6,0.31914819367304537,0.006537491087895708,0.1307237355472078,2,,0.3191480040550232 +3,-5.4376702308654785,,0.24117770577354097,0.03015417457053943,0.24583775670130603,0,0,0.2411780059337616 +3,-5.428890228271484,0,0.24063767815682807,0.02877703812125906,0.25117114314361677,0,,0.24063800275325775 +3,-5.457699775695801,1,0.24633308091442252,0.03012875661791404,0.24168468969129217,0,,0.24633300304412842 +3,-5.469550132751465,2,0.24384090811790385,0.03783069593766479,0.24771590795610338,0,,0.2438410073518753 +3,-5.456470012664795,3,0.2427207933145005,0.03367211120134591,0.24069321791836612,0,,0.24272100627422333 +3,-5.45451021194458,4,0.24615732265785062,0.029976468933687717,0.24581176032659666,0,,0.24615700542926788 +3,-5.419899940490723,5,0.2355276424639093,0.031005058554380818,0.2472750376213166,0,,0.23552800714969635 +3,-5.421879768371582,6,0.23301678514643498,0.03239838429174943,0.23487621138945652,0,,0.2330169975757599 +3,-0.35234299302101135,,0.24117770577354097,0.03015417457053943,0.24583775670130603,2,1,0.2411780059337616 +3,-0.35022398829460144,0,0.24177261417996185,0.03152483948919899,0.24687256531170348,2,,0.24177299439907074 +3,-0.3472839891910553,1,0.24012893149783082,0.03275272407179748,0.252146861626334,2,,0.2401289939880371 +3,-0.34878599643707275,2,0.24597088930249664,0.03503409214179188,0.23911344740952756,2,,0.24597099423408508 +3,-0.3579150140285492,3,0.23830076575333395,0.03349113372514329,0.2320491793732321,2,,0.23830099403858185 +3,-0.35530900955200195,4,0.2380903244902813,0.03046561130376226,0.24260987401540227,2,,0.23808999359607697 +3,-0.3470650017261505,5,0.24436667982447785,0.03434158591796368,0.2452868513471796,2,,0.24436700344085693 +3,-0.3525660037994385,6,0.2440280069635093,0.03410303245204604,0.2354549492417755,2,,0.2440280020236969 +4,-4.9807000160217285,,0.15091481023253867,-0.003946108358643573,0.36960914231895714,0,0,0.1509149968624115 +4,-4.967840194702148,0,0.14917266601153392,-0.00638174123699721,0.3689685876960334,0,,0.14917300641536713 +4,-4.970550060272217,1,0.14892255168087487,-0.004645336329455029,0.3754214148067227,0,,0.14892299473285675 +4,-4.998370170593262,2,0.1548419189154325,-0.00210951916874826,0.37276727660127,0,,0.15484200417995453 +4,-4.969940185546875,3,0.146430556007128,-0.0029496538319187544,0.36567548649636217,0,,0.14643099904060364 +4,-4.962540149688721,4,0.14613864490767545,-0.00473262765882337,0.3698385875678906,0,,0.146138995885849 +4,-4.971149921417236,5,0.14932696534028084,-0.005239941350406197,0.3713078828299389,0,,0.14932699501514435 +4,-5.003389835357666,6,0.16083081730024756,-0.007108373557399144,0.3723111084719605,0,,0.1608310043811798 +4,-0.3928239941596985,,0.15091481023253867,-0.003946108358643573,0.36960914231895714,2,1,0.1509149968624115 +4,-0.3928680121898651,0,0.15621745854324237,-0.0061562124641489045,0.3640330006921374,2,,0.15621699392795563 +4,-0.39197900891304016,1,0.1519285470691897,-0.005568127541079658,0.3766038341309674,2,,0.15192900598049164 +4,-0.39074400067329407,2,0.1502672893009864,-0.0026641619275341016,0.37446331163886276,2,,0.15026700496673584 +4,-0.40393099188804626,3,0.14389754519742287,-0.008875208347373108,0.3652095156761837,2,,0.14389799535274506 +4,-0.3903779983520508,4,0.15005624033450726,-0.0017400901188599407,0.372822288364217,2,,0.15005600452423096 +4,-0.4025590121746063,5,0.1452941148967355,-0.010954745335788576,0.3748264871836874,2,,0.14529399573802948 +4,-0.38984400033950806,6,0.15655388542136298,-0.005170168245301561,0.37080109487115387,2,,0.15655399858951569 +5,-4.88824987411499,,0.1145273043634697,0.006350289737514782,0.38836368561466683,0,0,0.11452700197696686 +5,-4.8524298667907715,0,0.1011688789930783,0.008018011539079597,0.37928620695704135,0,,0.10116899758577347 +5,-4.861400127410889,1,0.10493158876959537,0.007460193886069831,0.3853005207437543,0,,0.10493200272321701 +5,-4.880129814147949,2,0.11602249764067625,0.0022782313765918856,0.39155722348740224,0,,0.11602199822664261 +5,-4.911220073699951,3,0.12024038761477726,0.007853740317708765,0.3885495952645418,0,,0.12024000287055969 +5,-4.894509792327881,4,0.1182800841305407,0.004764143807189761,0.3934089120054798,0,,0.11828000098466873 +5,-4.916130065917969,5,0.12069549615436609,0.008659311765472296,0.38415705232672487,0,,0.12069500237703323 +5,-4.902530193328857,6,0.11431479763777629,0.011895796683041221,0.3966324932474122,0,,0.11431500315666199 +5,-0.4047420024871826,,0.1145273043634697,0.006350289737514782,0.38836368561466683,2,1,0.11452700197696686 +5,-0.4019719958305359,0,0.11558719795210244,0.0065630593616937795,0.39646854926791947,2,,0.11558700352907181 +5,-0.40303799510002136,1,0.1181308951963564,0.00545356323139666,0.38758111058523614,2,,0.11813099682331085 +5,-0.4145840108394623,2,0.09957889932570717,0.009318386108094035,0.3839029505914658,2,,0.09957890212535858 +5,-0.40852800011634827,3,0.11119556684856131,0.005617882479955788,0.3862226765697461,2,,0.11119599640369415 +5,-0.40870800614356995,4,0.1201700931549575,-0.002155060703194175,0.3891943012789269,2,,0.120169997215271 +5,-0.4059869945049286,5,0.12089068538768567,0.00008388947054333191,0.38888299206580124,2,,0.12089099735021591 +5,-0.39641299843788147,6,0.11997092073359802,0.010030152287461448,0.3908171013997869,2,,0.11997099965810776 diff --git a/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_minimal.yml/batch_df.csv b/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_minimal.yml/batch_df.csv new file mode 100644 index 00000000000..3c843a9fac5 --- /dev/null +++ b/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_minimal.yml/batch_df.csv @@ -0,0 +1,5 @@ +batch_id,distance,grad(distance wrt point_x),grad(distance wrt point_y),grad(distance wrt point_z),grad(distance.total wrt point_x),grad(distance.total wrt point_y),grad(distance.total wrt point_z),total_objective_value +0,-0.47999998927116394,0.800386413166211,0.8005475840870223,0.7993379824931577,0.800386413166211,0.8005475840870223,0.7993379824931577,-0.47999998927116394 +1,-0.48021799325942993,,,,,,,-0.48021799325942993 +2,-2.1564399332874018e-7,,,,,,,-2.1564399332874018e-7 +3,,-0.002589589373986991,-0.0021975527668754496,0.002055294932295381,-0.002589589373986991,-0.0021975527668754496,0.002055294932295381, diff --git a/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_minimal.yml/combined_df.csv b/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_minimal.yml/combined_df.csv new file mode 100644 index 00000000000..71375eaa295 --- /dev/null +++ b/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_minimal.yml/combined_df.csv @@ -0,0 +1,14 @@ +batch_distance,batch_id,batch_total_objective_value,distance,grad(distance wrt point_x),grad(distance wrt point_y),grad(distance wrt point_z),grad(distance.total wrt point_x),grad(distance.total wrt point_y),grad(distance.total wrt point_z),perturbation,point_x,point_y,point_z,realization,simulation_id +-0.47999998927116394,0,-0.47999998927116394,-0.4800580143928528,0.800386413166211,0.8005475840870223,0.7993379824931577,0.800386413166211,0.8005475840870223,0.7993379824931577,0,0.09901087864965215,0.09963221334853212,0.10128792526128925,0, +-0.47999998927116394,0,-0.47999998927116394,-0.47864800691604614,0.800386413166211,0.8005475840870223,0.7993379824931577,0.800386413166211,0.8005475840870223,0.7993379824931577,1,0.10019397441913262,0.10092023089963986,0.10057710379125726,0, +-0.47999998927116394,0,-0.47999998927116394,-0.4803299903869629,0.800386413166211,0.8005475840870223,0.7993379824931577,0.800386413166211,0.8005475840870223,0.7993379824931577,2,0.09936353635362903,0.1005419522204103,0.09968340454883419,0, +-0.47999998927116394,0,-0.47999998927116394,-0.4814029932022095,0.800386413166211,0.8005475840870223,0.7993379824931577,0.800386413166211,0.8005475840870223,0.7993379824931577,3,0.09967761088384104,0.10009716731867047,0.09847406959348105,0, +-0.47999998927116394,0,-0.47999998927116394,-0.47878599166870117,0.800386413166211,0.8005475840870223,0.7993379824931577,0.800386413166211,0.8005475840870223,0.7993379824931577,4,0.10119216610410166,0.0993289103248259,0.10100026941965946,0, +-0.47999998927116394,0,-0.47999998927116394,-0.47999998927116394,0.800386413166211,0.8005475840870223,0.7993379824931577,0.800386413166211,0.8005475840870223,0.7993379824931577,,0.1,0.1,0.1,0,0 +-0.48021799325942993,1,-0.48021799325942993,-0.48021799325942993,,,,,,,,0.9003863893128375,0.9005475602288456,0.89933795867103,0,0 +-2.1564399332874018e-7,2,-2.1564399332874018e-7,-2.1564399332874018e-7,,,,,,,,0.5001477706953976,0.5002283470065427,0.49962361487559637,0,0 +,3,,-4.253679890098283e-6,-0.002589589373986991,-0.0021975527668754496,0.002055294932295381,-0.002589589373986991,-0.0021975527668754496,0.002055294932295381,0,0.5002840918192507,0.5017603800861715,0.49896364546180455,0, +,3,,-7.0237001636996865e-6,-0.002589589373986991,-0.0021975527668754496,0.002055294932295381,-0.002589589373986991,-0.0021975527668754496,0.002055294932295381,1,0.4998359758389277,0.5005661161331015,0.49741614377739657,0, +,3,,-4.6479299271595664e-6,-0.002589589373986991,-0.0021975527668754496,0.002055294932295381,-0.002589589373986991,-0.0021975527668754496,0.002055294932295381,2,0.5009756921369564,0.5017699774012333,0.5007504216688614,0, +,3,,-1.6413199546150281e-6,-0.002589589373986991,-0.0021975527668754496,0.002055294932295381,-0.002589589373986991,-0.0021975527668754496,0.002055294932295381,3,0.5009025403397098,0.5000823691134275,0.5009055171026561,0, +,3,,-2.016239932345343e-6,-0.002589589373986991,-0.0021975527668754496,0.002055294932295381,-0.002589589373986991,-0.0021975527668754496,0.002055294932295381,4,0.5012218013173696,0.50062096785112,0.4996287291884253,0, diff --git a/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_minimal.yml/pert_real_df.csv b/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_minimal.yml/pert_real_df.csv new file mode 100644 index 00000000000..97d19083204 --- /dev/null +++ b/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_minimal.yml/pert_real_df.csv @@ -0,0 +1,14 @@ +batch_id,distance,perturbation,point_x,point_y,point_z,realization,simulation_id +0,-0.47999998927116394,,0.1,0.1,0.1,0,0 +0,-0.4800580143928528,0,0.09901087864965215,0.09963221334853212,0.10128792526128925,0, +0,-0.47864800691604614,1,0.10019397441913262,0.10092023089963986,0.10057710379125726,0, +0,-0.4803299903869629,2,0.09936353635362903,0.1005419522204103,0.09968340454883419,0, +0,-0.4814029932022095,3,0.09967761088384104,0.10009716731867047,0.09847406959348105,0, +0,-0.47878599166870117,4,0.10119216610410166,0.0993289103248259,0.10100026941965946,0, +1,-0.48021799325942993,,0.9003863893128375,0.9005475602288456,0.89933795867103,0,0 +2,-2.1564399332874018e-7,,0.5001477706953976,0.5002283470065427,0.49962361487559637,0,0 +3,-4.253679890098283e-6,0,0.5002840918192507,0.5017603800861715,0.49896364546180455,0, +3,-7.0237001636996865e-6,1,0.4998359758389277,0.5005661161331015,0.49741614377739657,0, +3,-4.6479299271595664e-6,2,0.5009756921369564,0.5017699774012333,0.5007504216688614,0, +3,-1.6413199546150281e-6,3,0.5009025403397098,0.5000823691134275,0.5009055171026561,0, +3,-2.016239932345343e-6,4,0.5012218013173696,0.50062096785112,0.4996287291884253,0, diff --git a/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_multiobj.yml/batch_df.csv b/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_multiobj.yml/batch_df.csv new file mode 100644 index 00000000000..3704d988ba6 --- /dev/null +++ b/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_multiobj.yml/batch_df.csv @@ -0,0 +1,4 @@ +batch_id,total_objective_value,distance_p,distance_q,grad(distance_p wrt point_x),grad(distance_p wrt point_y),grad(distance_p wrt point_z),grad(distance_p.total wrt point_x),grad(distance_p.total wrt point_y),grad(distance_p.total wrt point_z),grad(distance_q wrt point_x),grad(distance_q wrt point_y),grad(distance_q wrt point_z),grad(distance_q.total wrt point_x),grad(distance_q.total wrt point_y),grad(distance_q.total wrt point_z) +0,-2.333333333333333,-0.75,-4.75,0.9958928428240166,0.988662268075233,1.0046523526978053,-0.005628747817187252,-0.01513373353367009,1.3394821855541836,-3.0045647719236115,-3.0113880048267094,1.0044894985691353,-0.005628747817187252,-0.01513373353367009,1.3394821855541836 +1,-2.333525975545247,-0.7656459808349609,-4.703639984130859,,,,,,,,,,,, +2,-2.000048339366913,-0.5077850222587585,-4.476789951324463,,,,,,,,,,,, diff --git a/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_multiobj.yml/combined_df.csv b/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_multiobj.yml/combined_df.csv new file mode 100644 index 00000000000..3944f75230f --- /dev/null +++ b/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_multiobj.yml/combined_df.csv @@ -0,0 +1,9 @@ +batch_id,realization,simulation_id,perturbation,batch_distance_p,batch_distance_q,batch_total_objective_value,distance_p,distance_q,grad(distance_p wrt point_x),grad(distance_p wrt point_y),grad(distance_p wrt point_z),grad(distance_p.total wrt point_x),grad(distance_p.total wrt point_y),grad(distance_p.total wrt point_z),grad(distance_q wrt point_x),grad(distance_q wrt point_y),grad(distance_q wrt point_z),grad(distance_q.total wrt point_x),grad(distance_q.total wrt point_y),grad(distance_q.total wrt point_z),point_x,point_y,point_z +0,0,,0,-0.75,-4.75,-2.333333333333333,-0.7683209776878357,-4.779079914093018,0.9958928428240166,0.988662268075233,1.0046523526978053,-0.005628747817187252,-0.01513373353367009,1.3394821855541836,-3.0045647719236115,-3.0113880048267094,1.0044894985691353,-0.005628747817187252,-0.01513373353367009,1.3394821855541836,0.007656489025899215,-0.004966340149465272,-0.020507230903960533 +0,0,,1,-0.75,-4.75,-2.333333333333333,-0.7499780058860779,-4.7708001136779785,0.9958928428240166,0.988662268075233,1.0046523526978053,-0.005628747817187252,-0.01513373353367009,1.3394821855541836,-3.0045647719236115,-3.0113880048267094,1.0044894985691353,-0.005628747817187252,-0.01513373353367009,1.3394821855541836,-0.00006230591749947213,0.005266867206150141,-0.0051282086514880835 +0,0,,2,-0.75,-4.75,-2.333333333333333,-0.7553099989891052,-4.715700149536133,0.9958928428240166,0.988662268075233,1.0046523526978053,-0.005628747817187252,-0.01513373353367009,1.3394821855541836,-3.0045647719236115,-3.0113880048267094,1.0044894985691353,-0.005628747817187252,-0.01513373353367009,1.3394821855541836,-0.0029386530647460512,-0.006963940423224352,0.004671514564878933 +0,0,,3,-0.75,-4.75,-2.333333333333333,-0.7417100071907043,-4.753689765930176,0.9958928428240166,0.988662268075233,1.0046523526978053,-0.005628747817187252,-0.01513373353367009,1.3394821855541836,-3.0045647719236115,-3.0113880048267094,1.0044894985691353,-0.005628747817187252,-0.01513373353367009,1.3394821855541836,-0.01145886941256148,0.014455082946930023,0.005666587329380244 +0,0,,4,-0.75,-4.75,-2.333333333333333,-0.7333880066871643,-4.733789920806885,0.9958928428240166,0.988662268075233,1.0046523526978053,-0.005628747817187252,-0.01513373353367009,1.3394821855541836,-3.0045647719236115,-3.0113880048267094,1.0044894985691353,-0.005628747817187252,-0.01513373353367009,1.3394821855541836,0.001288578150312742,-0.0011888014578888583,0.01679753963774742 +0,0,0,,-0.75,-4.75,-2.333333333333333,-0.75,-4.75,0.9958928428240166,0.988662268075233,1.0046523526978053,-0.005628747817187252,-0.01513373353367009,1.3394821855541836,-3.0045647719236115,-3.0113880048267094,1.0044894985691353,-0.005628747817187252,-0.01513373353367009,1.3394821855541836,0.0,0.0,0.0 +1,0,0,,-0.7656459808349609,-4.703639984130859,-2.333525975545247,-0.7656459808349609,-4.703639984130859,,,,,,,,,,,,,-0.004202181916184627,-0.011298196942730383,1.0 +2,0,0,,-0.5077850222587585,-4.476789951324463,-2.000048339366913,-0.5077850222587585,-4.476789951324463,,,,,,,,,,,,,-0.0021007888698514315,-0.0056482862617779715,0.4999281115746754 diff --git a/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_multiobj.yml/pert_real_df.csv b/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_multiobj.yml/pert_real_df.csv new file mode 100644 index 00000000000..2dcf62d6638 --- /dev/null +++ b/tests/everest/snapshots/test_api_snapshots/test_csv_export/config_multiobj.yml/pert_real_df.csv @@ -0,0 +1,9 @@ +batch_id,realization,perturbation,simulation_id,distance_p,distance_q,point_x,point_y,point_z +0,0,,0,-0.75,-4.75,0.0,0.0,0.0 +0,0,0,,-0.7683209776878357,-4.779079914093018,0.007656489025899215,-0.004966340149465272,-0.020507230903960533 +0,0,1,,-0.7499780058860779,-4.7708001136779785,-0.00006230591749947213,0.005266867206150141,-0.0051282086514880835 +0,0,2,,-0.7553099989891052,-4.715700149536133,-0.0029386530647460512,-0.006963940423224352,0.004671514564878933 +0,0,3,,-0.7417100071907043,-4.753689765930176,-0.01145886941256148,0.014455082946930023,0.005666587329380244 +0,0,4,,-0.7333880066871643,-4.733789920806885,0.001288578150312742,-0.0011888014578888583,0.01679753963774742 +1,0,,0,-0.7656459808349609,-4.703639984130859,-0.004202181916184627,-0.011298196942730383,1.0 +2,0,,0,-0.5077850222587585,-4.476789951324463,-0.0021007888698514315,-0.0056482862617779715,0.4999281115746754 diff --git a/tests/everest/snapshots/test_egg_simulation/test_egg_snapshot/best_controls b/tests/everest/snapshots/test_egg_simulation/test_egg_snapshot/best_controls new file mode 100644 index 00000000000..efa2c369beb --- /dev/null +++ b/tests/everest/snapshots/test_egg_simulation/test_egg_snapshot/best_controls @@ -0,0 +1,4 @@ +result_id,batch_id,realization,simulation_id,well_rate_PROD1-1,well_rate_PROD2-1,well_rate_PROD3-1,well_rate_PROD4-1,well_rate_INJECT1-1,well_rate_INJECT2-1,well_rate_INJECT3-1,well_rate_INJECT4-1,well_rate_INJECT5-1,well_rate_INJECT6-1,well_rate_INJECT7-1,well_rate_INJECT8-1 +2,1,0,0,0.1999058451019366,0.6000415374802492,0.19994822906594492,0.5999121404696927,0.5999333812347782,0.5998249609455343,0.5999478780872213,0.6000766587484829,0.5997483050379139,0.5997645538239165,0.5999464128453291,0.6001158013106983 +2,1,1,1,0.1999058451019366,0.6000415374802492,0.19994822906594492,0.5999121404696927,0.5999333812347782,0.5998249609455343,0.5999478780872213,0.6000766587484829,0.5997483050379139,0.5997645538239165,0.5999464128453291,0.6001158013106983 +2,1,2,2,0.1999058451019366,0.6000415374802492,0.19994822906594492,0.5999121404696927,0.5999333812347782,0.5998249609455343,0.5999478780872213,0.6000766587484829,0.5997483050379139,0.5997645538239165,0.5999464128453291,0.6001158013106983 diff --git a/tests/everest/snapshots/test_egg_simulation/test_egg_snapshot/best_objective_gradients_csv b/tests/everest/snapshots/test_egg_simulation/test_egg_snapshot/best_objective_gradients_csv new file mode 100644 index 00000000000..c3c9b602ce8 --- /dev/null +++ b/tests/everest/snapshots/test_egg_simulation/test_egg_snapshot/best_objective_gradients_csv @@ -0,0 +1,13 @@ +result_id,batch_id,control_name,rf,rf.total +3,1,well_rate_PROD1-1,-0.0001652263441330399,-0.0001652263441330399 +3,1,well_rate_PROD2-1,-0.00017471993459638647,-0.00017471993459638647 +3,1,well_rate_PROD3-1,-0.0006246697489175857,-0.0006246697489175857 +3,1,well_rate_PROD4-1,-0.00041696791141070507,-0.00041696791141070507 +3,1,well_rate_INJECT1-1,0.00014572715946017988,0.00014572715946017988 +3,1,well_rate_INJECT2-1,0.000020160145178916144,0.000020160145178916144 +3,1,well_rate_INJECT3-1,0.00011211576845746024,0.00011211576845746024 +3,1,well_rate_INJECT4-1,-0.00039013326453636804,-0.00039013326453636804 +3,1,well_rate_INJECT5-1,0.000015273711834717528,0.000015273711834717528 +3,1,well_rate_INJECT6-1,0.00022688941880139667,0.00022688941880139667 +3,1,well_rate_INJECT7-1,-0.000017986172009426353,-0.000017986172009426353 +3,1,well_rate_INJECT8-1,-0.00007249824942858863,-0.00007249824942858863 diff --git a/tests/everest/snapshots/test_egg_simulation/test_egg_snapshot/best_objectives_csv b/tests/everest/snapshots/test_egg_simulation/test_egg_snapshot/best_objectives_csv new file mode 100644 index 00000000000..8be2ccb0adb --- /dev/null +++ b/tests/everest/snapshots/test_egg_simulation/test_egg_snapshot/best_objectives_csv @@ -0,0 +1,4 @@ +result_id,batch_id,realization,perturbation,rf,well_rate_PROD1-1,well_rate_PROD2-1,well_rate_PROD3-1,well_rate_PROD4-1,well_rate_INJECT1-1,well_rate_INJECT2-1,well_rate_INJECT3-1,well_rate_INJECT4-1,well_rate_INJECT5-1,well_rate_INJECT6-1,well_rate_INJECT7-1,well_rate_INJECT8-1 +3,1,0,0,0.17690399289131165,0.21284489964814637,0.6909564325624082,0.38431070691176333,0.8356643180772911,0.521629534106952,0.593979014614453,0.6040659148639875,0.7933463643524403,0.5993493412129899,0.5212494525431188,0.6070894345108306,0.6519904009594275 +3,1,1,0,0.175477996468544,0.298444266061598,0.7489971930595409,0.012799873895175784,0.6900597174834636,0.48925234184495137,0.542695688308217,0.6807768824317812,0.7317670260000283,0.6644455051643829,0.5000562156945711,0.6616537223014831,0.6921270651437204 +3,1,2,0,0.17582400143146515,0.43332587738243267,0.6304305725596401,0.254408502582991,0.4256930350912209,0.5920584096483588,0.5533444899078019,0.5039440678184369,0.5579961940071504,0.6274756974975367,0.49923076114351883,0.6427740436133934,0.5885310395649261 diff --git a/tests/everest/test_api_snapshots.py b/tests/everest/test_api_snapshots.py index cac5fdac177..ff50505773a 100644 --- a/tests/everest/test_api_snapshots.py +++ b/tests/everest/test_api_snapshots.py @@ -123,3 +123,34 @@ def test_api_summary_snapshot(config_file, snapshot, cached_example): orjson.dumps(dicts, option=orjson.OPT_INDENT_2).decode("utf-8").strip() + "\n", "snapshot.json", ) + + +@pytest.mark.parametrize( + "config_file", + [ + # "config_advanced.yml", "config_minimal.yml", + "config_multiobj.yml" + ], +) +def test_csv_export(config_file, cached_example, snapshot): + config_path, config_file, _ = cached_example(f"math_func/{config_file}") + config = EverestConfig.load_file(Path(config_path) / config_file) + + api = EverestDataAPI(config) + combined_df, pert_real_df, batch_df = api.export_dataframes() + + def _sort_df(df: polars.DataFrame) -> polars.DataFrame: + df_ = df.select(df.columns) + + sort_rows_by = df_.columns[0 : (min(len(df_.columns), 8))] + return df_.sort(sort_rows_by) + + snapshot.assert_match( + _sort_df(combined_df).write_csv(), + "combined_df.csv", + ) + snapshot.assert_match( + _sort_df(pert_real_df).write_csv(), + "pert_real_df.csv", + ) + snapshot.assert_match(_sort_df(batch_df).write_csv(), "batch_df.csv") diff --git a/tests/everest/test_detached.py b/tests/everest/test_detached.py index 994de4c3fd8..d0432055380 100644 --- a/tests/everest/test_detached.py +++ b/tests/everest/test_detached.py @@ -3,6 +3,7 @@ from pathlib import Path from unittest.mock import MagicMock, patch +import numpy as np import pytest import requests @@ -24,6 +25,7 @@ PROXY, ServerStatus, everserver_status, + get_opt_status, server_is_running, start_server, stop_server, @@ -337,3 +339,79 @@ async def server_running(): driver = await start_server(everest_config, debug=True) final_state = await server_running() assert final_state.returncode == 0 + + +def test_get_opt_status(cached_example): + _, config_file, _ = cached_example("math_func/config_multiobj.yml") + config = EverestConfig.load_file(config_file) + + opts = get_opt_status(config.optimization_output_dir) + + assert np.allclose( + opts["objective_history"], [-2.3333, -2.3335, -2.0000], atol=1e-4 + ) + + assert np.allclose( + opts["control_history"]["point_x"], + [0.0, -0.004202181916184627, -0.0021007888698514315], + atol=1e-4, + ) + assert np.allclose( + opts["control_history"]["point_y"], + [0.0, -0.011298196942730383, -0.0056482862617779715], + atol=1e-4, + ) + assert np.allclose( + opts["control_history"]["point_z"], [0.0, 1.0, 0.4999281115746754], atol=1e-4 + ) + + assert np.allclose( + opts["objectives_history"]["distance_p"], + [-0.75, -0.7656459808349609, -0.5077850222587585], + atol=1e-4, + ) + assert np.allclose( + opts["objectives_history"]["distance_q"], + [-4.75, -4.703639984130859, -4.476789951324463], + atol=1e-4, + ) + + assert opts["accepted_control_indices"] == [0, 2] + + cmond = opts["cli_monitor_data"] + + assert cmond["batches"] == [0, 1, 2] + assert cmond["controls"][0]["point_x"] == 0.0 + assert cmond["controls"][0]["point_y"] == 0.0 + assert cmond["controls"][0]["point_z"] == 0.0 + + assert np.allclose( + cmond["controls"][1]["point_x"], -0.004202181916184627, atol=1e-4 + ) + assert np.allclose( + cmond["controls"][1]["point_y"], -0.011298196942730383, atol=1e-4 + ) + assert np.allclose(cmond["controls"][1]["point_z"], 1.0, atol=1e-4) + assert np.allclose( + cmond["controls"][2]["point_x"], -0.0021007888698514315, atol=1e-4 + ) + assert np.allclose( + cmond["controls"][2]["point_y"], -0.0056482862617779715, atol=1e-4 + ) + assert np.allclose(cmond["controls"][2]["point_z"], 0.4999281115746754, atol=1e-4) + + assert np.allclose( + cmond["objective_value"], + [-2.333333333333333, -2.333525975545247, -2.000048339366913], + atol=1e-4, + ) + assert np.allclose( + cmond["expected_objectives"]["distance_p"], + [-0.75, -0.7656459808349609, -0.5077850222587585], + atol=1e-4, + ) + assert np.allclose( + cmond["expected_objectives"]["distance_q"], + [-4.75, -4.703639984130859, -4.476789951324463], + atol=1e-4, + ) diff --git a/tests/everest/test_egg_simulation.py b/tests/everest/test_egg_simulation.py index 96d466cf74c..54f80d3aea0 100644 --- a/tests/everest/test_egg_simulation.py +++ b/tests/everest/test_egg_simulation.py @@ -1,7 +1,8 @@ +import io import json import os -import sys +import polars import pytest from ert.config import ErtConfig @@ -10,7 +11,6 @@ from ert.run_models.everest_run_model import EverestRunModel from everest.config import EverestConfig from everest.config.export_config import ExportConfig -from everest.export import export_data from everest.simulator.everest_to_ert import _everest_to_ert_config_dict from tests.everest.utils import ( everest_default_jobs, @@ -709,15 +709,23 @@ def sweetcallbackofmine(self, *args, **kwargs): run_model.run_experiment(evaluator_server_config) assert cbtracker.called + best_batch = [b for b in run_model.ever_storage.data.batches if b.is_improvement][ + -1 + ] - data = export_data( - export_config=config.export, - output_dir=config.output_dir, - data_file=config.model.data_file if config.model else None, - ) - snapshot.assert_match( - data.drop(columns=["TCPUDAY", "start_time", "end_time"], axis=1) - .round(6) - .to_csv(), - f"egg-py{sys.version_info.major}{sys.version_info.minor}.csv", - ) + def _df_to_string(df: polars.DataFrame): + strbuf = io.StringIO() + schema = df.schema + df.with_columns( + polars.col(c) for c in df.columns if schema[c] == polars.Float32 + ).write_csv(strbuf) + + return strbuf.getvalue() + + best_objectives_csv = _df_to_string(best_batch.perturbation_objectives) + best_objective_gradients_csv = _df_to_string(best_batch.batch_objective_gradient) + best_controls = _df_to_string(best_batch.realization_controls) + + snapshot.assert_match(best_controls, "best_controls") + snapshot.assert_match(best_objectives_csv, "best_objectives_csv") + snapshot.assert_match(best_objective_gradients_csv, "best_objective_gradients_csv") diff --git a/tests/everest/test_everlint.py b/tests/everest/test_everlint.py index 12f5886a410..2f714b4ff2b 100644 --- a/tests/everest/test_everlint.py +++ b/tests/everest/test_everlint.py @@ -201,23 +201,6 @@ def test_bool_validation(value, valid, min_config, tmp_path, monkeypatch): EverestConfig(**min_config) -@pytest.mark.parametrize( - "path_val, valid", [("my_file", True), ("my_folder/", False), ("my_folder", False)] -) -def test_export_filepath_validation(min_config, tmp_path, monkeypatch, path_val, valid): - monkeypatch.chdir(tmp_path) - Path("my_file").touch() - Path("my_folder").mkdir() - min_config["export"] = {"csv_output_filepath": path_val} - expectation = ( - does_not_raise() - if valid - else pytest.raises(ValidationError, match="Invalid type") - ) - with expectation: - EverestConfig(**min_config) - - def test_invalid_wells(tmp_path, monkeypatch): monkeypatch.chdir(tmp_path) Path("my_file").touch() diff --git a/tests/everest/test_everserver.py b/tests/everest/test_everserver.py index fa95bae4126..6ca18ff37a5 100644 --- a/tests/everest/test_everserver.py +++ b/tests/everest/test_everserver.py @@ -6,12 +6,12 @@ from unittest.mock import patch import pytest -from seba_sqlite.snapshot import SebaSnapshot from ert.run_models.everest_run_model import EverestExitCode from everest.config import EverestConfig, OptimizationConfig, ServerConfig from everest.detached import ServerStatus, everserver_status from everest.detached.jobs import everserver +from everest.everest_storage import EverestStorage from everest.simulator import JOB_FAILURE, JOB_SUCCESS from everest.strings import OPT_FAILURE_REALIZATIONS, SIM_PROGRESS_ENDPOINT @@ -218,12 +218,11 @@ def test_everserver_status_max_batch_num( # The server should complete without error. assert status["status"] == ServerStatus.completed + storage = EverestStorage(Path(config.optimization_output_dir)) + storage.read_from_output_dir() # Check that there is only one batch. - snapshot = SebaSnapshot(config.optimization_output_dir).get_snapshot( - filter_out_gradient=False, batches=None - ) - assert {data.batch for data in snapshot.simulation_data} == {0} + assert {b.batch_id for b in storage.data.batches} == {0} @pytest.mark.integration_test diff --git a/tests/everest/test_export.py b/tests/everest/test_export.py deleted file mode 100644 index 4686748df4a..00000000000 --- a/tests/everest/test_export.py +++ /dev/null @@ -1,353 +0,0 @@ -import os -import shutil -from pathlib import Path - -import pandas as pd -import pytest - -from everest import filter_data -from everest.bin.utils import export_with_progress -from everest.config import EverestConfig -from everest.config.export_config import ExportConfig -from everest.export import check_for_errors, export_data - -CONFIG_FILE = "config_multiobj.yml" -DATA = pd.DataFrame( - { - "WOPT:WELL0": range(4), - "MONKEY": 4 * [0], - "WCON:WELL1": 4 * [14], - "GOPT:GROUP0": [5, 6, 2, 1], - "WOPT:WELL1": range(4), - } -) - -pytestmark = pytest.mark.xdist_group(name="starts_everest") - - -def assertEqualDataFrames(x, y): - assert set(x.columns) == set(y.columns) - for col in x.columns: - assert list(x[col]) == list(y[col]) - - -def test_filter_no_wildcard(): - keywords = ["MONKEY", "Dr. MONKEY", "WOPT:WELL1"] - assertEqualDataFrames(DATA[["MONKEY", "WOPT:WELL1"]], filter_data(DATA, keywords)) - - -def test_filter_leading_wildcard(): - keywords = ["*:WELL1"] - assertEqualDataFrames( - DATA[["WCON:WELL1", "WOPT:WELL1"]], filter_data(DATA, keywords) - ) - - -def test_filter_trailing_wildcard(): - keywords = ["WOPT:*", "MONKEY"] - assertEqualDataFrames( - DATA[["MONKEY", "WOPT:WELL0", "WOPT:WELL1"]], - filter_data(DATA, keywords), - ) - - -def test_filter_double_wildcard(): - keywords = ["*OPT:*0"] - assertEqualDataFrames( - DATA[["WOPT:WELL0", "GOPT:GROUP0"]], filter_data(DATA, keywords) - ) - - -def test_export_only_non_gradient_with_increased_merit(cached_example, snapshot): - config_path, config_file, _ = cached_example("math_func/config_multiobj.yml") - config = EverestConfig.load_file(Path(config_path) / config_file) - # Default export functionality when no export section is defined - df = export_data( - export_config=config.export, - output_dir=config.output_dir, - data_file=config.model.data_file if config.model else None, - ) - - # Test that the default export functionality generated data frame - # contains only non gradient simulations - snapshot.assert_match( - df.drop(["start_time", "end_time"], axis=1).round(4).to_csv(), "export.csv" - ) - - -def test_export_only_non_gradient(cached_example, snapshot): - config_path, config_file, _ = cached_example("math_func/config_multiobj.yml") - config = EverestConfig.load_file(Path(config_path) / config_file) - - # Add export section to config - config.export = ExportConfig(discard_rejected=False) - - df = export_data( - export_config=config.export, - output_dir=config.output_dir, - data_file=config.model.data_file if config.model else None, - ) - - snapshot.assert_match( - df.drop(["start_time", "end_time"], axis=1).round(4).to_csv(), "export.csv" - ) - - -def test_export_only_increased_merit(cached_example, snapshot): - config_path, config_file, _ = cached_example("math_func/config_multiobj.yml") - config = EverestConfig.load_file(Path(config_path) / config_file) - - # Add export section to config - config.export = ExportConfig(discard_gradient=False) - - df = export_data( - export_config=config.export, - output_dir=config.output_dir, - data_file=config.model.data_file if config.model else None, - ) - - snapshot.assert_match( - df.drop(["start_time", "end_time"], axis=1).round(4).to_csv(), - "export.csv", - ) - - -def test_export_all_batches(cached_example, snapshot): - config_path, config_file, _ = cached_example("math_func/config_multiobj.yml") - config = EverestConfig.load_file(Path(config_path) / config_file) - - # Add export section to config - config.export = ExportConfig(discard_gradient=False, discard_rejected=False) - - df = export_data( - export_config=config.export, - output_dir=config.output_dir, - data_file=config.model.data_file if config.model else None, - ) - - snapshot.assert_match( - df.drop(["start_time", "end_time"], axis=1).round(4).to_csv(), "export.csv" - ) - - -def test_export_only_give_batches(cached_example, snapshot): - config_path, config_file, _ = cached_example("math_func/config_multiobj.yml") - config = EverestConfig.load_file(Path(config_path) / config_file) - - # Add export section to config - config.export = ExportConfig(discard_gradient=True, batches=[2]) - - df = export_data( - export_config=config.export, - output_dir=config.output_dir, - data_file=config.model.data_file if config.model else None, - ) - - snapshot.assert_match( - df.drop(["start_time", "end_time"], axis=1).round(4).to_csv(), "export.csv" - ) - - -def test_export_batches_progress(cached_example, snapshot): - config_path, config_file, _ = cached_example("math_func/config_multiobj.yml") - config = EverestConfig.load_file(Path(config_path) / config_file) - - # Add export section to config - config.export = ExportConfig(discard_gradient=True, batches=[2]) - - df = export_with_progress(config) - # Check only simulations from given batches are present in export - # drop non-deterministic columns - df = df.drop(["start_time", "end_time", "simulation"], axis=1) - df = df.sort_values(by=["realization", "batch", "sim_avg_obj"]) - - snapshot.assert_match(df.round(4).to_csv(index=False), "export.csv") - - -def test_export_nothing_for_empty_batch_list(cached_example): - config_path, config_file, _ = cached_example("math_func/config_multiobj.yml") - config = EverestConfig.load_file(Path(config_path) / config_file) - - # Add discard gradient flag to config file - config.export = ExportConfig( - discard_gradient=True, discard_rejected=True, batches=[] - ) - df = export_data( - export_config=config.export, - output_dir=config.output_dir, - data_file=config.model.data_file if config.model else None, - ) - - # Check export returns empty data frame - assert df.empty - - -def test_export_nothing(cached_example): - config_path, config_file, _ = cached_example("math_func/config_multiobj.yml") - config = EverestConfig.load_file(Path(config_path) / config_file) - - # Add discard gradient flag to config file - config.export = ExportConfig( - skip_export=True, discard_gradient=True, discard_rejected=True, batches=[3] - ) - df = export_data( - export_config=config.export, - output_dir=config.output_dir, - data_file=config.model.data_file if config.model else None, - ) - - # Check export returns empty data frame - assert df.empty - - -def test_get_export_path(cached_example): - config_path, config_file, _ = cached_example("math_func/config_multiobj.yml") - config = EverestConfig.load_file(Path(config_path) / config_file) - - # Test default export path when no csv_output_filepath is defined - expected_export_path = os.path.join( - config.output_dir, CONFIG_FILE.replace(".yml", ".csv") - ) - assert expected_export_path == config.export_path - - # Test export path when csv_output_filepath is an absolute path - new_export_folderpath = os.path.join(config.output_dir, "new/folder") - new_export_filepath = os.path.join( - new_export_folderpath, CONFIG_FILE.replace(".yml", ".csv") - ) - - config.export = ExportConfig(csv_output_filepath=new_export_filepath) - - expected_export_path = new_export_filepath - assert expected_export_path == config.export_path - - # Test export path when csv_output_filepath is a relative path - config.export.csv_output_filepath = os.path.join( - "new/folder", CONFIG_FILE.replace(".yml", ".csv") - ) - assert expected_export_path == config.export_path - - # Test export when file does not contain an extension. - config_file_no_extension = os.path.splitext(os.path.basename(CONFIG_FILE))[0] - shutil.copy(CONFIG_FILE, config_file_no_extension) - new_config = EverestConfig.load_file(config_file_no_extension) - expected_export_path = os.path.join( - new_config.output_dir, f"{config_file_no_extension}.csv" - ) - assert expected_export_path == new_config.export_path - - -def test_validate_export(cached_example): - config_path, config_file, _ = cached_example( - "../../tests/everest/test_data/mocked_test_case/mocked_multi_batch.yml" - ) - config = EverestConfig.load_file(Path(config_path) / config_file) - - def check_error(expected_error, reported_errors): - expected_error_msg, expected_export_ecl = expected_error - error_list, export_ecl = reported_errors - # If no error was message provided the list of errors - # should also be empty - if not expected_error_msg: - assert len(error_list) == 0 - assert expected_export_ecl == export_ecl - else: - found = False - for error in error_list: - if expected_error_msg in error: - found = True - break - assert found - assert expected_export_ecl == export_ecl - - # Test error when user defines an empty list for the eclipse keywords - config.export = ExportConfig() - config.export.keywords = [] - errors, export_ecl = check_for_errors( - config=config.export, - optimization_output_path=config.optimization_output_dir, - storage_path=config.storage_dir, - data_file_path=config.model.data_file, - ) - check_error( - expected_error=("No eclipse keywords selected for export", False), - reported_errors=(errors, export_ecl), - ) - - # Test error when user defines an empty list for the eclipse keywords - # and empty list of for batches to export - config.export.batches = [] - errors, export_ecl = check_for_errors( - config=config.export, - optimization_output_path=config.optimization_output_dir, - storage_path=config.storage_dir, - data_file_path=config.model.data_file, - ) - check_error( - expected_error=("No batches selected for export.", False), - reported_errors=(errors, export_ecl), - ) - - # Test export validator outputs no errors when the config file contains - # only keywords that represent a subset of already internalized keys - config.export.keywords = ["FOPT"] - config.export.batches = None - errors, export_ecl = check_for_errors( - config=config.export, - optimization_output_path=config.optimization_output_dir, - storage_path=config.storage_dir, - data_file_path=config.model.data_file, - ) - check_error(expected_error=("", True), reported_errors=(errors, export_ecl)) - - non_int_key = "STANGE_KEY" - config.export.keywords = [non_int_key, "FOPT"] - errors, export_ecl = check_for_errors( - config=config.export, - optimization_output_path=config.optimization_output_dir, - storage_path=config.storage_dir, - data_file_path=config.model.data_file, - ) - - check_error( - ( - f"Non-internalized ecl keys selected for export '{non_int_key}'.", - False, - ), - (errors, export_ecl), - ) - - # Test that validating the export spots non-valid batches and removes - # them from the list of batches selected for export. - non_valid_batch = 42 - config.export = ExportConfig(batches=[0, non_valid_batch]) - errors, export_ecl = check_for_errors( - config=config.export, - optimization_output_path=config.optimization_output_dir, - storage_path=config.storage_dir, - data_file_path=config.model.data_file, - ) - check_error( - ( - f"Batch {non_valid_batch} not found in optimization results. Skipping for" - " current export", - True, - ), - (errors, export_ecl), - ) - assert config.export.batches == [0] - - -def test_export_gradients(cached_example, snapshot): - config_path, config_file, _ = cached_example("math_func/config_multiobj.yml") - config = EverestConfig.load_file(Path(config_path) / config_file) - - df = export_data( - export_config=config.export, - output_dir=config.output_dir, - data_file=config.model.data_file if config.model else None, - ) - - snapshot.assert_match( - df.drop(["start_time", "end_time"], axis=1).round(4).to_csv(), "export.csv" - ) diff --git a/tests/everest/test_math_func.py b/tests/everest/test_math_func.py index dc9331a6342..ffde0b7d2e5 100644 --- a/tests/everest/test_math_func.py +++ b/tests/everest/test_math_func.py @@ -1,15 +1,10 @@ -import itertools import os -import numpy as np -import pandas as pd import pytest import yaml from ert.run_models.everest_run_model import EverestRunModel from everest.config import EverestConfig, InputConstraintConfig -from everest.config.export_config import ExportConfig -from everest.export import export_data from everest.util import makedirs_if_needed CONFIG_FILE_MULTIOBJ = "config_multiobj.yml" @@ -37,68 +32,6 @@ def test_math_func_multiobj( (-0.5 * (2.0 / 3.0) * 1.5) + (-4.5 * (1.0 / 3.0) * 1.0), abs=0.01 ) - # Test conversion to pandas DataFrame - if config.export is None: - config.export = ExportConfig(discard_rejected=False) - - df = export_data( - export_config=config.export, - output_dir=config.output_dir, - data_file=config.model.data_file if config.model else None, - ) - ok_evals = df[(df["is_gradient"] == 0) & (df["success"] == 1)] - - # Three points in this case are increasing the merit - assert len(ok_evals[ok_evals["increased_merit"] == 1]) == 2 - - first = ok_evals.iloc[0] - best = ok_evals.iloc[-1] - assert first["point_x"] == 0 - assert first["point_y"] == 0 - assert first["point_z"] == 0 - assert first["distance_p"] == -(0.5 * 0.5 * 3) - assert first["distance_q"] == -(1.5 * 1.5 * 2 + 0.5 * 0.5) - assert first["sim_avg_obj"] == (-0.75 * (2.0 / 3.0) * 1.5) + ( - -4.75 * (1.0 / 3.0) * 1.0 - ) - - assert best["point_x"] == pytest.approx(x) - assert best["point_y"] == pytest.approx(y) - assert best["point_z"] == pytest.approx(z) - assert best["sim_avg_obj"] == pytest.approx(run_model.result.total_objective) - - test_space = itertools.product( - (first, best), - ( - ("distance_p", 2.0 / 3, 1.5), - ("distance_q", 1.0 / 3, 1), - ), - ) - for row, (obj_name, weight, norm) in test_space: - assert row[obj_name] * norm == row[obj_name + "_norm"] - assert row[obj_name] * weight * norm == pytest.approx( - row[obj_name + "_weighted_norm"] - ) - - assert first["realization_weight"] == 1.0 - assert best["realization_weight"] == 1.0 - - # check exported sim_avg_obj against dakota_tabular - dt = pd.read_csv( - os.path.join(config.optimization_output_dir, "dakota", "dakota_tabular.dat"), - sep=" +", - engine="python", - ) - dt.sort_values(by=["%eval_id"], inplace=True) - ok_evals = ok_evals.sort_values(by=["batch"]) - for a, b in zip( - dt["obj_fn"], # pylint: disable=unsubscriptable-object - ok_evals["sim_avg_obj"], - strict=False, - ): - # Opposite, because ropt negates values before passing to dakota - assert -a == pytest.approx(b) - @pytest.mark.integration_test def test_math_func_advanced( @@ -130,55 +63,6 @@ def test_math_func_advanced( expected_opt = -(w[0] * (dist_0) + w[1] * (dist_1)) assert expected_opt == pytest.approx(run_model.result.total_objective, abs=0.001) - # Test conversion to pandas DataFrame - df = export_data( - export_config=config.export, - output_dir=config.output_dir, - data_file=config.model.data_file if config.model else None, - ) - ok_evals = df[(df["is_gradient"] == 0) & (df["success"] == 1)] - - ok_evals_0 = ok_evals[ok_evals["realization"] == 0] - best_0 = ok_evals_0.iloc[-1] - assert best_0[f"point_{point_names[0]}"] == pytest.approx(x0) - assert best_0[f"point_{point_names[1]}"] == pytest.approx(x1) - assert best_0[f"point_{point_names[2]}"] == pytest.approx(x2) - assert best_0["distance"] == pytest.approx(-dist_0, abs=0.001) - assert best_0["real_avg_obj"] == pytest.approx( - run_model.result.total_objective, abs=0.001 - ) - assert best_0["realization_weight"] == 0.25 - - ok_evals_1 = ok_evals[ok_evals["realization"] == 2] - best_1 = ok_evals_1.iloc[-1] - assert best_1[f"point_{point_names[0]}"] == pytest.approx(x0) - assert best_1[f"point_{point_names[1]}"] == pytest.approx(x1) - assert best_1[f"point_{point_names[2]}"] == pytest.approx(x2) - assert best_1["distance"] == pytest.approx(-dist_1, abs=0.001) - assert best_1["real_avg_obj"] == pytest.approx( - run_model.result.total_objective, abs=0.001 - ) - assert best_1["realization_weight"] == 0.75 - - # check functionality of export batch filtering - if "export" not in config: - config.export = ExportConfig() - - exp_nunique = 2 - batches_list = [0, 2] - config.export.batches = batches_list - - batch_filtered_df = export_data( - export_config=config.export, - output_dir=config.output_dir, - data_file=config.model.data_file if config.model else None, - ) - n_unique_batches = batch_filtered_df["batch"].nunique() - unique_batches = np.sort(batch_filtered_df["batch"].unique()).tolist() - - assert exp_nunique == n_unique_batches - assert batches_list == unique_batches - @pytest.mark.integration_test def test_remove_run_path( diff --git a/tests/everest/test_simulator_cache.py b/tests/everest/test_simulator_cache.py index 8a61b6bca65..7942ec6c724 100644 --- a/tests/everest/test_simulator_cache.py +++ b/tests/everest/test_simulator_cache.py @@ -1,5 +1,3 @@ -from pathlib import Path - import numpy as np import pytest @@ -43,9 +41,6 @@ def new_call(*args): # Now do another run, where the functions should come from the cache: n_evals = 0 - # If we want to do another run, the seba database must be made new: - Path("everest_output/optimization_output/seba.db").unlink() - # The batch_id was used as a stopping criterion, so it must be reset: run_model._batch_id = 0