|
| 1 | +import os |
1 | 2 | from pathlib import Path
|
2 | 3 |
|
3 | 4 | import polars
|
@@ -269,3 +270,177 @@ def summary_values(self, batches=None, keys=None):
|
269 | 270 | @property
|
270 | 271 | def output_folder(self):
|
271 | 272 | return self._config.output_dir
|
| 273 | + |
| 274 | + def export_dataframes( |
| 275 | + self, |
| 276 | + ) -> tuple[polars.DataFrame, polars.DataFrame, polars.DataFrame]: |
| 277 | + batch_dfs_to_join = {} |
| 278 | + realization_dfs_to_join = {} |
| 279 | + perturbation_dfs_to_join = {} |
| 280 | + |
| 281 | + batch_ids = [b.batch_id for b in self._ever_storage.data.batches] |
| 282 | + all_controls = self._ever_storage.data.controls["control_name"].to_list() |
| 283 | + |
| 284 | + def _try_append_df( |
| 285 | + batch_id: int, |
| 286 | + df: polars.DataFrame | None, |
| 287 | + target: dict[str, list[polars.DataFrame]], |
| 288 | + ): |
| 289 | + if df is not None: |
| 290 | + if batch_id not in target: |
| 291 | + target[batch.batch_id] = [] |
| 292 | + |
| 293 | + target[batch_id].append(df) |
| 294 | + |
| 295 | + def try_append_batch_dfs(batch_id: int, *dfs: polars.DataFrame): |
| 296 | + for df_ in dfs: |
| 297 | + _try_append_df(batch_id, df_, batch_dfs_to_join) |
| 298 | + |
| 299 | + def try_append_realization_dfs(batch_id: int, *dfs: polars.DataFrame): |
| 300 | + for df_ in dfs: |
| 301 | + _try_append_df(batch_id, df_, realization_dfs_to_join) |
| 302 | + |
| 303 | + def try_append_perturbation_dfs(batch_id: int, *dfs: polars.DataFrame): |
| 304 | + for df_ in dfs: |
| 305 | + _try_append_df(batch_id, df_, perturbation_dfs_to_join) |
| 306 | + |
| 307 | + def pivot_gradient(df: polars.DataFrame) -> polars.DataFrame: |
| 308 | + pivoted_ = df.pivot(on="control_name", index="batch_id", separator=" wrt ") |
| 309 | + return pivoted_.rename( |
| 310 | + { |
| 311 | + col: f"grad({col})" |
| 312 | + for col in pivoted_.columns |
| 313 | + if col != "batch_id" and col not in all_controls |
| 314 | + } |
| 315 | + ) |
| 316 | + |
| 317 | + for batch in self._ever_storage.data.batches: |
| 318 | + try_append_perturbation_dfs( |
| 319 | + batch.batch_id, |
| 320 | + batch.perturbation_objectives, |
| 321 | + batch.perturbation_constraints, |
| 322 | + ) |
| 323 | + |
| 324 | + try_append_realization_dfs( |
| 325 | + batch.batch_id, |
| 326 | + batch.realization_objectives, |
| 327 | + batch.realization_controls, |
| 328 | + batch.realization_constraints, |
| 329 | + ) |
| 330 | + |
| 331 | + if batch.batch_objective_gradient is not None: |
| 332 | + try_append_batch_dfs( |
| 333 | + batch.batch_id, pivot_gradient(batch.batch_objective_gradient) |
| 334 | + ) |
| 335 | + |
| 336 | + if batch.batch_constraint_gradient is not None: |
| 337 | + try_append_batch_dfs( |
| 338 | + batch.batch_id, |
| 339 | + pivot_gradient(batch.batch_constraint_gradient), |
| 340 | + ) |
| 341 | + |
| 342 | + try_append_batch_dfs( |
| 343 | + batch.batch_id, batch.batch_objectives, batch.batch_constraints |
| 344 | + ) |
| 345 | + |
| 346 | + def _join_by_batch( |
| 347 | + dfs: dict[int, list[polars.DataFrame]], on: list[str] |
| 348 | + ) -> list[polars.DataFrame]: |
| 349 | + """ |
| 350 | + Creates one dataframe per batch, with one column per input/output, |
| 351 | + including control, objective, constraint, gradient value. |
| 352 | + """ |
| 353 | + dfs_to_concat_ = [] |
| 354 | + for batch_id in batch_ids: |
| 355 | + if batch_id not in dfs: |
| 356 | + continue |
| 357 | + |
| 358 | + batch_df_ = dfs[batch_id][0] |
| 359 | + for bdf_ in dfs[batch_id][1:]: |
| 360 | + if set(all_controls).issubset(set(bdf_.columns)) and set( |
| 361 | + all_controls |
| 362 | + ).issubset(set(batch_df_.columns)): |
| 363 | + bdf_ = bdf_.drop(all_controls) |
| 364 | + |
| 365 | + batch_df_ = batch_df_.join( |
| 366 | + bdf_, |
| 367 | + on=on, |
| 368 | + ) |
| 369 | + |
| 370 | + dfs_to_concat_.append(batch_df_) |
| 371 | + |
| 372 | + return dfs_to_concat_ |
| 373 | + |
| 374 | + batch_dfs_to_concat = _join_by_batch(batch_dfs_to_join, on=["batch_id"]) |
| 375 | + batch_df = polars.concat(batch_dfs_to_concat, how="diagonal") |
| 376 | + |
| 377 | + realization_dfs_to_concat = _join_by_batch( |
| 378 | + realization_dfs_to_join, on=["batch_id", "realization", "simulation_id"] |
| 379 | + ) |
| 380 | + realization_df = polars.concat(realization_dfs_to_concat, how="diagonal") |
| 381 | + |
| 382 | + perturbation_dfs_to_concat = _join_by_batch( |
| 383 | + perturbation_dfs_to_join, on=["batch_id", "realization", "perturbation"] |
| 384 | + ) |
| 385 | + perturbation_df = polars.concat(perturbation_dfs_to_concat, how="diagonal") |
| 386 | + |
| 387 | + pert_real_df = polars.concat([realization_df, perturbation_df], how="diagonal") |
| 388 | + |
| 389 | + pert_real_df = pert_real_df.select( |
| 390 | + "batch_id", |
| 391 | + "realization", |
| 392 | + "perturbation", |
| 393 | + *list( |
| 394 | + set(pert_real_df.columns) - {"batch_id", "realization", "perturbation"} |
| 395 | + ), |
| 396 | + ) |
| 397 | + |
| 398 | + # Avoid name collisions when joining with simulations |
| 399 | + batch_df_renamed = batch_df.rename( |
| 400 | + { |
| 401 | + col: f"batch_{col}" |
| 402 | + for col in batch_df.columns |
| 403 | + if col != "batch_id" and not col.startswith("grad") |
| 404 | + } |
| 405 | + ) |
| 406 | + combined_df = pert_real_df.join( |
| 407 | + batch_df_renamed, on="batch_id", how="full", coalesce=True |
| 408 | + ) |
| 409 | + |
| 410 | + def _sort_df(df: polars.DataFrame, index: list[str]): |
| 411 | + sorted_cols = index + sorted(set(df.columns) - set(index)) |
| 412 | + df_ = df.select(sorted_cols).sort(by=index) |
| 413 | + return df_ |
| 414 | + |
| 415 | + return ( |
| 416 | + _sort_df( |
| 417 | + combined_df, |
| 418 | + ["batch_id", "realization", "simulation_id", "perturbation"], |
| 419 | + ), |
| 420 | + _sort_df( |
| 421 | + pert_real_df, |
| 422 | + [ |
| 423 | + "batch_id", |
| 424 | + "realization", |
| 425 | + "perturbation", |
| 426 | + "simulation_id", |
| 427 | + ], |
| 428 | + ), |
| 429 | + _sort_df(batch_df, ["batch_id", "total_objective_value"]), |
| 430 | + ) |
| 431 | + |
| 432 | + @property |
| 433 | + def everest_csv(self): |
| 434 | + export_filename = ( |
| 435 | + self._config.export.csv_output_filepath |
| 436 | + if self._config.export is not None |
| 437 | + else f"{self._config.config_file}.csv" |
| 438 | + ) |
| 439 | + |
| 440 | + full_path = os.path.join(self.output_folder, export_filename) |
| 441 | + |
| 442 | + if not os.path.exists(full_path): |
| 443 | + combined_df, _, _ = self.export_dataframes() |
| 444 | + combined_df.write_csv(full_path) |
| 445 | + |
| 446 | + return os.path.join(self.output_folder, export_filename) |
0 commit comments