-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_and_test.py
84 lines (66 loc) · 2.51 KB
/
load_and_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from __future__ import print_function
import os
import sys
import numpy as np
import keras
from sentence_types import load_encoded_data
from sentence_types import encode_data
from sentence_types import get_custom_test_comments
from keras.preprocessing import sequence
from keras.models import Sequential, model_from_json
from keras.layers import Dense, Dropout, Activation, Embedding
from keras.layers import Conv1D, GlobalMaxPooling1D
from keras.preprocessing.text import Tokenizer
# Where to store model
model_name = "models/cnn"
# Where to get the training/test data
embedding_name = "data/default"
# Model configuration
max_words = 110000
maxlen = 500
batch_size = 64
embedding_dims = 75
filters = 100
kernel_size = 5
hidden_dims = 350
epochs = 7
# Add parts-of-speech to data
pos_tags_flag = True
# Export & load embeddings
x_train, x_test, y_train, y_test = load_encoded_data(data_split=0.8, embedding_name=embedding_name, pos_tags=pos_tags_flag)
num_classes = np.max(y_train) + 1
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
# load model
json_file = open(model_name + '.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
model = model_from_json(loaded_model_json)
# load weights into new model
model.load_weights(model_name + ".h5")
# evaluate loaded model on test data
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
score = model.evaluate(x_test, y_test, batch_size=batch_size, verbose=1)
print('Test accuracy:', score[1])
# Run the model on some random test data..
test_comments, test_comments_category = get_custom_test_comments()
x_test, _, y_test, _ = encode_data(test_comments, test_comments_category, data_split=1.0,
embedding_name=embedding_name, add_pos_tags_flag=pos_tags_flag)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
y_test = keras.utils.to_categorical(y_test, num_classes)
score = model.evaluate(x_test, y_test, batch_size=batch_size, verbose=1)
print('Manual test')
print('Test accuracy:', score[1])
# Show predictions against our random data.
print(len(x_test))
predictions = model.predict(x_test, batch_size=batch_size, verbose=1)
real = []
test = []
for i in range(0, len(predictions)):
real.append(y_test[i].argmax(axis=0))
test.append(predictions[i].argmax(axis=0))
print("Predictions")
print("Real", real)
print("Test", test)