@@ -14,7 +14,7 @@ PyGSP: Graph Signal Processing in Python
1414 :target: https://pygsp.readthedocs.io
1515.. |pypi | image :: https://img.shields.io/pypi/v/pygsp.svg
1616 :target: https://pypi.python.org/pypi/PyGSP
17- .. |zenodo | image :: https://zenodo.org/badge/16276560 .svg
17+ .. |zenodo | image :: https://zenodo.org/badge/DOI/10.5281/zenodo.1003157 .svg
1818 :target: https://doi.org/10.5281/zenodo.1003157
1919.. |license | image :: https://img.shields.io/pypi/l/pygsp.svg
2020 :target: https://github.com/epfl-lts2/pygsp/blob/master/LICENSE.txt
@@ -33,13 +33,11 @@ PyGSP: Graph Signal Processing in Python
3333
3434The PyGSP is a Python package to ease
3535`Signal Processing on Graphs <https://arxiv.org/abs/1211.0053 >`_.
36- It is a free software, distributed under the BSD license, and
37- available on `PyPI <https://pypi.python.org/pypi/PyGSP >`_.
3836The documentation is available on
3937`Read the Docs <https://pygsp.readthedocs.io >`_
4038and development takes place on
4139`GitHub <https://github.com/epfl-lts2/pygsp >`_.
42- (A `Matlab counterpart <https://lts2.epfl.ch/gsp >`_ exists.)
40+ A (mostly unmaintained) `Matlab version <https://lts2.epfl.ch/gsp >`_ exists.
4341
4442The PyGSP facilitates a wide variety of operations on graphs, like computing
4543their Fourier basis, filtering or interpolating signals, plotting graphs,
@@ -60,8 +58,15 @@ main objects of the package.
6058
6159>>> from pygsp import graphs, filters
6260>>> G = graphs.Logo()
63- >>> G.estimate_lmax()
64- >>> g = filters.Heat(G, tau = 100 )
61+ >>> G.compute_fourier_basis() # Fourier to plot the eigenvalues.
62+ >>> # G.estimate_lmax() is otherwise sufficient.
63+ >>> g = filters.Heat(G, tau = 50 )
64+ >>> g.plot()
65+
66+ .. image :: ../pygsp/data/readme_example_filter.png
67+ :alt:
68+ .. image :: pygsp/data/readme_example_filter.png
69+ :alt:
6570
6671Let's now create a graph signal: a set of three Kronecker deltas for that
6772example. We can now look at one step of heat diffusion by filtering the deltas
@@ -73,11 +78,11 @@ structure!
7378>>> s = np.zeros(G.N)
7479>>> s[DELTAS ] = 1
7580>>> s = g.filter(s)
76- >>> G.plot_signal(s, highlight = DELTAS , backend = ' matplotlib ' )
81+ >>> G.plot_signal(s, highlight = DELTAS )
7782
78- .. image :: ../pygsp/data/readme_example .png
83+ .. image :: ../pygsp/data/readme_example_graph .png
7984 :alt:
80- .. image :: pygsp/data/readme_example .png
85+ .. image :: pygsp/data/readme_example_graph .png
8186 :alt:
8287
8388You can
@@ -86,7 +91,7 @@ look at the
8691`tutorials <https://pygsp.readthedocs.io/en/stable/tutorials/index.html >`_
8792to learn how to use it, or look at the
8893`reference guide <https://pygsp.readthedocs.io/en/stable/reference/index.html >`_
89- for an exhaustive documentation of the API. Enjoy the package !
94+ for an exhaustive documentation of the API. Enjoy!
9095
9196Installation
9297------------
@@ -115,6 +120,16 @@ research purpose at the `EPFL LTS2 laboratory <https://lts2.epfl.ch>`_.
115120This project has been partly funded by the Swiss National Science Foundation
116121under grant 200021_154350 "Towards Signal Processing on Graphs".
117122
123+ The code in this repository is released under the terms of the `BSD 3-Clause license <LICENSE.txt >`_.
124+
118125If you are using the library for your research, for the sake of
119126reproducibility, please cite the version you used as indexed by
120127`Zenodo <https://doi.org/10.5281/zenodo.1003157 >`_.
128+ Or cite the generic concept as::
129+
130+ @misc{pygsp,
131+ title = {PyGSP: Graph Signal Processing in Python},
132+ author = {Defferrard, Micha\"el and Martin, Lionel and Pena, Rodrigo and Perraudin, Nathana\"el},
133+ doi = {10.5281/zenodo.1003157},
134+ url = {https://github.com/epfl-lts2/pygsp/},
135+ }
0 commit comments