@@ -14,7 +14,7 @@ PyGSP: Graph Signal Processing in Python
1414   :target:  https://pygsp.readthedocs.io 
1515.. |pypi | image :: https://img.shields.io/pypi/v/pygsp.svg 
1616   :target:  https://pypi.python.org/pypi/PyGSP 
17- .. |zenodo | image :: https://zenodo.org/badge/16276560 .svg 
17+ .. |zenodo | image :: https://zenodo.org/badge/DOI/10.5281/zenodo.1003157 .svg 
1818   :target:  https://doi.org/10.5281/zenodo.1003157 
1919.. |license | image :: https://img.shields.io/pypi/l/pygsp.svg 
2020   :target:  https://github.com/epfl-lts2/pygsp/blob/master/LICENSE.txt 
@@ -33,13 +33,11 @@ PyGSP: Graph Signal Processing in Python
3333
3434The PyGSP is a Python package to ease
3535`Signal Processing on Graphs  <https://arxiv.org/abs/1211.0053 >`_.
36- It is a free software, distributed under the BSD license, and
37- available on `PyPI  <https://pypi.python.org/pypi/PyGSP >`_.
3836The documentation is available on
3937`Read the Docs  <https://pygsp.readthedocs.io >`_
4038and development takes place on
4139`GitHub  <https://github.com/epfl-lts2/pygsp >`_.
42- (A  `Matlab counterpart   <https://epfl-lts2.github.io/gspbox-html >`_ exists.) 
40+ A (mostly unmaintained)  `Matlab version   <https://epfl-lts2.github.io/gspbox-html >`_ exists.
4341
4442The PyGSP facilitates a wide variety of operations on graphs, like computing
4543their Fourier basis, filtering or interpolating signals, plotting graphs,
@@ -60,8 +58,15 @@ main objects of the package.
6058
6159>>> from  pygsp import  graphs, filters
6260>>> G =  graphs.Logo() 
63- >>> G.estimate_lmax() 
64- >>> g =  filters.Heat(G, tau = 100 ) 
61+ >>> G.compute_fourier_basis()  #  Fourier to plot the eigenvalues. 
62+ >>> #  G.estimate_lmax() is otherwise sufficient.
63+ >>> g =  filters.Heat(G, tau = 50 ) 
64+ >>> g.plot() 
65+ 
66+ .. image :: ../pygsp/data/readme_example_filter.png 
67+     :alt: 
68+ .. image :: pygsp/data/readme_example_filter.png 
69+     :alt: 
6570
6671Let's now create a graph signal: a set of three Kronecker deltas for that
6772example. We can now look at one step of heat diffusion by filtering the deltas
@@ -73,11 +78,11 @@ structure!
7378>>> s =  np.zeros(G.N) 
7479>>> s[DELTAS ] =  1  
7580>>> s =  g.filter(s) 
76- >>> G.plot_signal(s, highlight = DELTAS ,  backend = ' matplotlib '  
81+ >>> G.plot_signal(s, highlight = DELTAS ) 
7782
78- .. image :: ../pygsp/data/readme_example .png 
83+ .. image :: ../pygsp/data/readme_example_graph .png 
7984    :alt: 
80- .. image :: pygsp/data/readme_example .png 
85+ .. image :: pygsp/data/readme_example_graph .png 
8186    :alt: 
8287
8388You can
@@ -86,7 +91,7 @@ look at the
8691`tutorials  <https://pygsp.readthedocs.io/en/stable/tutorials/index.html >`_
8792to learn how to use it, or look at the
8893`reference guide  <https://pygsp.readthedocs.io/en/stable/reference/index.html >`_
89- for an exhaustive documentation of the API. Enjoy the package !
94+ for an exhaustive documentation of the API. Enjoy!
9095
9196Installation
9297------------ 
@@ -115,6 +120,16 @@ research purpose at the `EPFL LTS2 laboratory <https://lts2.epfl.ch>`_.
115120This project has been partly funded by the Swiss National Science Foundation
116121under grant 200021_154350 "Towards Signal Processing on Graphs".
117122
123+ The code in this repository is released under the terms of the `BSD 3-Clause license  <LICENSE.txt >`_.
124+ 
118125If you are using the library for your research, for the sake of
119126reproducibility, please cite the version you used as indexed by
120127`Zenodo  <https://doi.org/10.5281/zenodo.1003157 >`_.
128+ Or cite the generic concept as::
129+ 
130+     @misc{pygsp, 
131+       title = {PyGSP: Graph Signal Processing in Python}, 
132+       author = {Defferrard, Micha\"el and Martin, Lionel and Pena, Rodrigo and Perraudin, Nathana\"el}, 
133+       doi = {10.5281/zenodo.1003157}, 
134+       url = {https://github.com/epfl-lts2/pygsp/}, 
135+     } 
0 commit comments