forked from brynemorgan/Dart_EnvGIS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWeek3-3_Numpy.py
269 lines (180 loc) · 5.91 KB
/
Week3-3_Numpy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#------------------------------------------------------------------------------
__author__ = 'James T. Dietrich'
__contact__ = '[email protected]'
__copyright__ = '(c) James Dietrich 2016'
__license__ = 'MIT'
__date__ = 'Wed Nov 16 11:33:39 2016'
__version__ = '1.0'
__status__ = "initial release"
__url__ = "https://github.com/geojames/..."
"""
Name: Week3-3_Numpy.py
Compatibility: Python 3.5
Description: This program does stuff
URL: https://github.com/geojames/...
Requires: libraries
Dev ToDo:
AUTHOR: James T. Dietrich
ORGANIZATION: Dartmouth College
Contact: [email protected]
Copyright: (c) James Dietrich 2016
"""
#------------------------------------------------------------------------------
# Arrays are another data type that we can use within Python
#
# The NUMPY library is one wy to generate and manipulate arrays
#
# Arrays in Numpy can be multi-dimensional
# 1-Dimension = One row of 1 column (like a list)
# 2-Dimensions = multiple rows and columns
# 3+ Dimensions = arrays within arrays OR nested arrays (not that common)
#
# Arrays are useful when you have data that has an specific organization
# Things like:
# + Time-series data (Time, Value1, Value2...
# + Geographic data (Lat, Long, Elev, Attributes...)
# + Items with attributes
# NAME att1 att2 att3
# item1 ... ... ...
# item2 ... ... ...
#
# + Images (raster data) are stored in 2-D array
# The recommened import syntax is:
import numpy as np
# CONSTRUTING ARRAYS
# Arrays are normally contruted as individual rows
# 1-D arrays
one_d = np.array([0,1,2,3,4,5])
print(one_d)
# array attributes
# Length
len(one_d)
# array methods...plus much more
print(one_d.ndim) # dimensions
print(one_d.size) # size (for 1-D number of columns)
# 2-D Arrays
# np.array( [ [first row], [second row], [thrid row]...] )
two_d = np.array([[1,2,3,4], [5,6,7,8]])
# or stacked (same thing as above)
two_d = np.array([[1,2,3,4],
[5,6,7,8]])
print(two_d.ndim)
print(two_d.shape)
rows = two_d.shape[0]
columns = two_d.shape[1]
#%% Why use arrays????
# easier to store data
# much faster processing times than lists
import timeit
a = np.arange(10000)
%timeit a + 1
b = range(10000)
%timeit [i+1 for i in b]
#%% ARRAY INDEXING / SLICING
# create a 16 element array 1-16 in 4 rows and 4 columns
# np.arange is like the range() func we have used before
# arange(start,end,step) ** end is exclusive (end-1)
# !!! Arrays have single data types (int, float, OR string)
# !!! np.arange(1.0,17.0) is no tthe same as np.arange(1,17)
import numpy as np
a = np.arange(1.0,17.0)
print(a)
b = a.reshape(4,4)
print(b)
# Array indexing is like lists, except we are referencing the rows and columns
# a[row,column] * remember the first index is 0
# 1-D
print(a[3])
# 2-D
print(b[2,2])
print(b[0,3])
# reasigning single values
b[0,2] = 79.45
# selecting ranges in arrays
# for 1-D, just like lists the format is a[start:end:step]
print(a[0:2])
print(a[::3])
# for 2-D, a[row_start:row_end:row_step, col_start,col_end,col_step]
print(b[1:3,2:3])
# Selecing all the rows in a column, or all columns in a row
print(b[:,2])
print(b[3,:])
#%% Array creation tricks
# arange(start,end,step) ** end is exclusive (end-1)
a = np.arange(1.0,100.0,3)
# linspace(start, end, num-points) ** end is inclusive, without endpint option
b = np.linspace(0, 1, 6)
c = np.linspace(0, 1, 5, endpoint=False)
# Zeros and Ones, arrays of a stated size filled with 0 or 1
zeros = np.zeros((4, 7))
ones = np.ones((3, 3))
# identity arrays (1 on the diagonal, 0 everywhere else) - for linear algebra
eye = np.eye(5)
# random number arrays
# np.random.rand()
# np.random.rand(rows,columns)
rand_a = np.random.rand(4)
rand_b = np.random.rand(3,4)
#%% Copying / Views
# Numpy is a little strange...when you create a new variable via indexing
# or slicing you create a "view" of the original array
# in his example below, a is the original and b is a "View"
a = np.arange(1.0,17.0)
b = a.reshape(4,4)
# views are OK for most things, but for some operations you may get an error:
# ...this array: it does not own its data
# if this is the case you need to make a COPY of the original array
c = b.resize(6,4)
c = b.copy()
c.resize((6,4))
# you can also copy specific parts of an array
d = b[:2,:2].copy()
#%% Reshapeing
# often we need to transfrom array shapes
# ** the reshaped array must have the same number of elements as the input
a = np.arange(1.0,17.0)
print(a)
b = a.reshape(4,4)
print(b)
#%% Resizing - adding or deleting rows/columns
#
# Copy the original array
# use .resize(rows,columns)
a = np.array([[1,2,3],[4,5,6]])
smaller = a.copy()
smaller.resize(2,2)
bigger = a.copy()
bigger.resize(6,6)
#%% Transposing / Flipping
# Transposing switchs the rows and columns (row 1 > column 1...)
d = c.T
# flipping reverses the order
# flipud = up/down
# fliplr = left/right
flip_up = np.flipud(c)
flip_left = np.fliplr(c)
# ** Transposing sometimes falis...
# The default for a 1-D array is a column vector, sometimes you need a row
# vector
# this makes a column vector
one_d = np.array([0,1,2,3,4,5])
# transposing should switch it, but it doesn't
one_d_T = one_d.T
# to create a row vector we can use, np.atleast_2d , to force numpy to make a row
one_d_row = np.atleast_2d([0,1,2,3,4,5])
# adding a row to columns
add_row = bigger + one_d_row
#%% MISSING DATA / NaN
# missing data in a numpy array should NOT be stored as zeros, since zeros can
# be a valid value depending on the data
# think temperature, 0 degrees a temperature not missing data
# in an array we use the convention NaN (not a number)
missing_data= np.array([[1.,2.],
[3.,np.nan]])
missing_data_mean = missing_data.mean()
missing_data_nanmean = np.nanmean(missing_data)
#%% ASSIGNING NAN
a = np.random.rand(10)
a[2:4] = np.nan