-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathobject_detection_webcam.py
53 lines (41 loc) · 1.64 KB
/
object_detection_webcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# -*- coding: utf-8 -*-
"""
Created on Thu Aug 15 01:41:57 2019
@author: emirhanylmzz
"""
import cv2
import numpy as np
import time
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
print("INFO loading model...")
net = cv2.dnn.readNetFromCaffe("MobileNetSSD_deploy.prototxt.txt", "MobileNetSSD_deploy.caffemodel")
def detect(frame):
(w,h) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(frame, 0.007843, (300, 300), 127.5)
net.setInput(blob)
detections = net.forward()
for i in np.arange(0, detections.shape[2]):
idx = int(detections[0, 0, i, 1])
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
label = "{}: {:.2f}%".format(CLASSES[idx], detections[0, 0, i, 2] * 100)
cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2)
y = startY - 15 if startY - 15 > 15 else startY + 15
cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
return frame
cap = cv2.VideoCapture(0)
start = time.time()
while True:
_, frame = cap.read()
canvas = detect(frame)
cv2.imshow('Video', canvas)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
end = time.time()
print("INFO program took {:.2f} seconds".format(end - start))
cap.release()
cv2.destroyAllWindows()