-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_model_list.py
177 lines (163 loc) · 3.75 KB
/
create_model_list.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from __future__ import annotations
import logging
from mteb.model_meta import ModelMeta
from mteb.models import (
align_models,
arctic_models,
bedrock_models,
bge_models,
blip2_models,
blip_models,
bm25,
cde_models,
clip_models,
codesage_models,
cohere_models,
cohere_v,
colbert_models,
dino_models,
e5_instruct,
e5_models,
e5_v,
evaclip_models,
fa_models,
gme_v_models,
google_models,
gritlm_models,
gte_models,
ibm_granite_models,
inf_models,
jasper_models,
jina_clip,
jina_models,
lens_models,
linq_models,
llm2vec_models,
misc_models,
moco_models,
model2vec_models,
moka_models,
mxbai_models,
no_instruct_sentence_models,
nomic_models,
nomic_models_vision,
nvidia_models,
openai_models,
openclip_models,
piccolo_models,
promptriever_models,
qodo_models,
qtack_models,
repllama_models,
rerankers_custom,
rerankers_monot5_based,
ru_sentence_models,
salesforce_models,
sentence_transformers_models,
siglip_models,
sonar_models,
stella_models,
text2vec_models,
uae_models,
vista_models,
vlm2vec_models,
voyage_models,
voyage_v,
)
logger = logging.getLogger(__name__)
model_modules = [
align_models,
arctic_models,
bedrock_models,
bge_models,
blip2_models,
blip_models,
bm25,
clip_models,
codesage_models,
cde_models,
cohere_models,
cohere_v,
colbert_models,
dino_models,
e5_instruct,
e5_models,
e5_v,
evaclip_models,
google_models,
gritlm_models,
gte_models,
ibm_granite_models,
inf_models,
jasper_models,
jina_models,
jina_clip,
lens_models,
linq_models,
llm2vec_models,
misc_models,
model2vec_models,
moka_models,
moco_models,
mxbai_models,
no_instruct_sentence_models,
nomic_models,
nomic_models_vision,
nvidia_models,
openai_models,
openclip_models,
piccolo_models,
gme_v_models,
promptriever_models,
qodo_models,
qtack_models,
repllama_models,
rerankers_custom,
rerankers_monot5_based,
ru_sentence_models,
salesforce_models,
sentence_transformers_models,
siglip_models,
vista_models,
vlm2vec_models,
voyage_v,
stella_models,
sonar_models,
text2vec_models,
uae_models,
voyage_models,
fa_models,
]
MIEB_MODEL_REGISTRY = {}
for module in model_modules:
for mdl in vars(module).values():
if isinstance(mdl, ModelMeta):
if "image" in mdl.modalities:
MIEB_MODEL_REGISTRY[mdl.name] = mdl
all_mieb_model_names = MIEB_MODEL_REGISTRY.keys()
num_models = len(all_mieb_model_names)
logger.info(f"{num_models=}")
columns = ["Model Name", "Type", "Model Size", "Modalities"]
main_latex_table = """\\begin{table*}\centering
% \scriptsize
\centering
\\resizebox{0.7\\textwidth}{!}{
\\begin{tabular}{lccc}\\toprule\n"""
title_col = " &".join([f"\\textbf{{{c}}}" for c in columns])
main_latex_table += title_col
main_latex_table += " \\\\\midrule\n"
for model_name, meta in MIEB_MODEL_REGISTRY.items():
model_type = "Encoder"
for mllm_name in ["voyage", "vlm2vec", "e5"]:
if mllm_name in meta.name.lower():
model_type = "MLLM"
break
model_size = int(meta.n_parameters / 1e6) if meta.n_parameters else "N/A"
modalities = ", ".join(meta.modalities)
row = f"{model_name} & {model_type} & {model_size} & {modalities} \\\\ \n"
main_latex_table += row
main_latex_table += """\\bottomrule
\end{tabular}}
\caption{List of all models evaluated in MIEB. Model sizes are in millions of parameters.}\label{tab: list of models}
\end{table*}"""
print(main_latex_table)