-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
62 lines (44 loc) · 1.92 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import sys
import torch
import torchvision
from torch.utils.data import sampler
import torchvision.transforms as transforms
class Logger:
def __init__(self, log_file):
self.terminal = sys.stdout
self.log = open(log_file, "a")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
pass
class ChunkSampler(sampler.Sampler):
"""Samples elements sequentially from some offset.
Arguments:
num_samples: # of desired datapoints
start: offset where we should start selecting from
"""
def __init__(self, num_samples, start=0):
self.num_samples = num_samples
self.start = start
def __iter__(self):
return iter(range(self.start, self.start + self.num_samples))
def __len__(self):
return self.num_samples
def getCIFAR10(validation=True):
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
nw = 4 # number of workers threads
bs = 64 # batch size
train_size = 50000
if validation:
# 75% training, 25% validation
train_size = 37500
validation_size = 12500
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=bs, shuffle=False, num_workers=nw, sampler=ChunkSampler(train_size, 0))
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=bs, shuffle=False, num_workers=nw)
if validation:
validationloader = torch.utils.data.DataLoader(trainset, batch_size=bs, shuffle=False, num_workers=nw, sampler=ChunkSampler(validation_size, train_size))
return trainloader, validationloader, testloader
return trainloader, testloader