-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathezdxf_exporter.py
523 lines (484 loc) · 20.1 KB
/
ezdxf_exporter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
#! /usr/bin/python3 -sP
# coding=utf-8
#
# Copyright (C) 2005,2007,2008 Aaron Spike, [email protected]
# Copyright (C) 2008,2010 Alvin Penner, [email protected]
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
"""
This file output script for Inkscape creates a AutoCAD R14 DXF file.
The spec can be found here: http://www.autodesk.com/techpubs/autocad/acadr14/dxf/index.htm.
File history:
- template dxf_outlines.dxf added Feb 2008 by Alvin Penner
- ROBO-Master output option added Aug 2008
- ROBO-Master multispline output added Sept 2008
- LWPOLYLINE output modification added Dec 2008
- toggle between LINE/LWPOLYLINE added Jan 2010
- support for transform elements added July 2010
- support for layers added July 2010
- support for rectangle added Dec 2010
"""
from __future__ import print_function
import inkex
from inkex import (
colors,
bezier,
Transform,
Group,
Layer,
Use,
PathElement,
Rectangle,
Line,
Circle,
Ellipse,
)
from inkex.localization import inkex_gettext as _
import ezdxf
import io
from uuid import uuid4
import random
def get_matrix(u, i, j):
if j == i + 2:
return (
(u[i] - u[i - 1])
* (u[i] - u[i - 1])
/ (u[i + 2] - u[i - 1])
/ (u[i + 1] - u[i - 1])
)
elif j == i + 1:
return (
(u[i] - u[i - 1]) * (u[i + 2] - u[i]) / (u[i + 2] - u[i - 1])
+ (u[i + 1] - u[i]) * (u[i] - u[i - 2]) / (u[i + 1] - u[i - 2])
) / (u[i + 1] - u[i - 1])
elif j == i:
return (
(u[i + 1] - u[i])
* (u[i + 1] - u[i])
/ (u[i + 1] - u[i - 2])
/ (u[i + 1] - u[i - 1])
)
else:
return 0
def get_fit(u, csp, col):
return (
(1 - u) ** 3 * csp[0][col]
+ 3 * (1 - u) ** 2 * u * csp[1][col]
+ 3 * (1 - u) * u**2 * csp[2][col]
+ u**3 * csp[3][col]
)
def class2layer(self, svg):
layer_list = []
xpath_expr = "//*[contains(concat(' ', normalize-space(@class), ' '), ' Ifc')]"
elements = svg.xpath(xpath_expr)
for element in elements:
classes = element.get('class').split()
IfcClass = [string for string in classes if string.startswith('Ifc')][0]
inkex.utils.debug(IfcClass)
if IfcClass not in layer_list:
layer = svg.add(Group(id=IfcClass))
layer.set('inkscape:groupmode', 'layer')
layer.set('inkscape:label', IfcClass)
layer_list.append(IfcClass)
self.dxf.layers.add(
name=IfcClass,
color=random.randint(1, 255)
)
else:
layer = svg.getElementById(IfcClass)
layer.add(element)
# inkex.utils.debug(IfcClass)
return svg
def to_binary_data(doc):
dxf_stream = io.StringIO()
doc.write(dxf_stream)
dxf_data = dxf_stream.getvalue()
dxf_stream.close()
return dxf_data.encode()
def get_insert_point(node, mat):
if not isinstance(node, (PathElement, Rectangle, Line, Circle, Ellipse)):
return
path = node.path.to_superpath().transform(Transform(mat) @ node.transform)
return [path[0][0][1][0], path[0][0][1][1]]
class EzDxfExporter(inkex.OutputExtension):
def add_arguments(self, pars):
# pars.add_argument("--tab")
# pars.add_argument("-R", "--ROBO", type=inkex.Boolean, default=False)
# pars.add_argument("-P", "--POLY", type=inkex.Boolean, default=False)
# pars.add_argument("-F", "--FLATTENBEZ", type=inkex.Boolean, default=False)
# pars.add_argument(
# "--unit_from_document", type=inkex.Boolean, default=True
# ) # px
# pars.add_argument("--units", default="px") # px
# pars.add_argument("--encoding", dest="char_encode", default="latin_1")
# pars.add_argument("--layer_option", default="all")
# pars.add_argument("--layer_name")
# self.dxf = []
# self.handle = 255 # handle for DXF ENTITY
# self.layers = ["0"]
self.layer = "0" # mandatory layer
# self.layernames = []
# self.csp_old = [[0.0, 0.0]] * 4 # previous spline
# self.d = [0.0] # knot vector
# self.poly = [[0.0, 0.0]] # LWPOLYLINE data
def dxf_add(self, str):
self.dxf.append(str.encode(self.options.char_encode))
def dxf_line(self, block, csp, first_coord):
"""Draw a line in the DXF format"""
# self.handle += 1
# self.dxf_add(
# " 0\nLINE\n 5\n%x\n100\nAcDbEntity\n 8\n%s\n 62\n%d\n100\nAcDbLine\n"
# % (self.handle, self.layer, self.color)
# )
# self.dxf_add(
# " 10\n%f\n 20\n%f\n 30\n0.0\n 11\n%f\n 21\n%f\n 31\n0.0\n"
# % (csp[0][0], csp[0][1], csp[1][0], csp[1][1])
# )
line = block.add_line((csp[0][0], csp[0][1]),(csp[1][0], csp[1][1]))
line.translate(-first_coord[0], -first_coord[1], 0)
# def LWPOLY_line(self, csp):
# if (
# abs(csp[0][0] - self.poly[-1][0]) > 0.0001
# or abs(csp[0][1] - self.poly[-1][1]) > 0.0001
# or self.color_LWPOLY != self.color
# ): # THIS LINE IS NEW
# self.LWPOLY_output() # terminate current polyline
# self.poly = [csp[0]] # initiallize new polyline
# self.color_LWPOLY = self.color
# self.layer_LWPOLY = self.layer
# self.poly.append(csp[1])
# def LWPOLY_output(self):
# if len(self.poly) == 1:
# return
# self.handle += 1
# closed = 1
# if (
# abs(self.poly[0][0] - self.poly[-1][0]) > 0.0001
# or abs(self.poly[0][1] - self.poly[-1][1]) > 0.0001
# ):
# closed = 0
# self.dxf_add(
# " 0\nLWPOLYLINE\n 5\n%x\n100\nAcDbEntity\n 8\n%s\n 62\n%d\n100\nAcDbPolyline\n 90\n%d\n 70\n%d\n"
# % (
# self.handle,
# self.layer_LWPOLY,
# self.color_LWPOLY,
# len(self.poly) - closed,
# closed,
# )
# )
# for i in range(len(self.poly) - closed):
# self.dxf_add(
# " 10\n%f\n 20\n%f\n 30\n0.0\n" % (self.poly[i][0], self.poly[i][1])
# )
# def dxf_spline(self, csp):
# knots = 8
# ctrls = 4
# self.handle += 1
# self.dxf_add(
# " 0\nSPLINE\n 5\n%x\n100\nAcDbEntity\n 8\n%s\n 62\n%d\n100\nAcDbSpline\n"
# % (self.handle, self.layer, self.color)
# )
# self.dxf_add(" 70\n8\n 71\n3\n 72\n%d\n 73\n%d\n 74\n0\n" % (knots, ctrls))
# for i in range(2):
# for j in range(4):
# self.dxf_add(" 40\n%d\n" % i)
# for i in csp:
# self.dxf_add(" 10\n%f\n 20\n%f\n 30\n0.0\n" % (i[0], i[1]))
# def ROBO_spline(self, csp):
# """this spline has zero curvature at the endpoints, as in ROBO-Master"""
# if (
# abs(csp[0][0] - self.csp_old[3][0]) > 0.0001
# or abs(csp[0][1] - self.csp_old[3][1]) > 0.0001
# or abs(
# (csp[1][1] - csp[0][1]) * (self.csp_old[3][0] - self.csp_old[2][0])
# - (csp[1][0] - csp[0][0]) * (self.csp_old[3][1] - self.csp_old[2][1])
# )
# > 0.001
# ):
# self.ROBO_output() # terminate current spline
# self.xfit = [csp[0][0]] # initiallize new spline
# self.yfit = [csp[0][1]]
# self.d = [0.0]
# self.color_ROBO = self.color
# self.layer_ROBO = self.layer
# self.xfit += 3 * [0.0]
# self.yfit += 3 * [0.0]
# self.d += 3 * [0.0]
# for i in range(1, 4):
# j = len(self.d) + i - 4
# self.xfit[j] = get_fit(i / 3.0, csp, 0)
# self.yfit[j] = get_fit(i / 3.0, csp, 1)
# self.d[j] = self.d[j - 1] + bezier.pointdistance(
# (self.xfit[j - 1], self.yfit[j - 1]), (self.xfit[j], self.yfit[j])
# )
# self.csp_old = csp
# def ROBO_output(self):
# try:
# import numpy
# from numpy.linalg import solve
# except ImportError:
# inkex.errormsg(
# _(
# "Failed to import the numpy or numpy.linalg modules. "
# "These modules are required by the ROBO option."
# "Please install them and try again."
# )
# )
# return
# if len(self.d) == 1:
# return
# fits = len(self.d)
# ctrls = fits + 2
# knots = ctrls + 4
# self.xfit += 2 * [0.0] # pad with 2 endpoint constraints
# self.yfit += 2 * [0.0]
# self.d += 6 * [0.0] # pad with 3 duplicates at each end
# self.d[fits + 2] = self.d[fits + 1] = self.d[fits] = self.d[fits - 1]
# solmatrix = numpy.zeros((ctrls, ctrls), dtype=float)
# for i in range(fits):
# solmatrix[i, i] = get_matrix(self.d, i, i)
# solmatrix[i, i + 1] = get_matrix(self.d, i, i + 1)
# solmatrix[i, i + 2] = get_matrix(self.d, i, i + 2)
# solmatrix[fits, 0] = self.d[2] / self.d[fits - 1] # curvature at start = 0
# solmatrix[fits, 1] = -(self.d[1] + self.d[2]) / self.d[fits - 1]
# solmatrix[fits, 2] = self.d[1] / self.d[fits - 1]
# solmatrix[fits + 1, fits - 1] = (self.d[fits - 1] - self.d[fits - 2]) / self.d[
# fits - 1
# ] # curvature at end = 0
# solmatrix[fits + 1, fits] = (
# self.d[fits - 3] + self.d[fits - 2] - 2 * self.d[fits - 1]
# ) / self.d[fits - 1]
# solmatrix[fits + 1, fits + 1] = (self.d[fits - 1] - self.d[fits - 3]) / self.d[
# fits - 1
# ]
# xctrl = solve(solmatrix, self.xfit)
# yctrl = solve(solmatrix, self.yfit)
# self.handle += 1
# self.dxf_add(
# " 0\nSPLINE\n 5\n%x\n100\nAcDbEntity\n 8\n%s\n 62\n%d\n100\nAcDbSpline\n"
# % (self.handle, self.layer_ROBO, self.color_ROBO)
# )
# self.dxf_add(
# " 70\n0\n 71\n3\n 72\n%d\n 73\n%d\n 74\n%d\n" % (knots, ctrls, fits)
# )
# for i in range(knots):
# self.dxf_add(" 40\n%f\n" % self.d[i - 3])
# for i in range(ctrls):
# self.dxf_add(" 10\n%f\n 20\n%f\n 30\n0.0\n" % (xctrl[i], yctrl[i]))
# for i in range(fits):
# self.dxf_add(" 11\n%f\n 21\n%f\n 31\n0.0\n" % (self.xfit[i], self.yfit[i]))
def process_shape(self, node, mat, block, insert_point):
rgb = (0, 0, 0)
style = node.style("stroke")
if style is not None and isinstance(style, inkex.Color):
rgb = style.to_rgb()
hsl = colors.rgb_to_hsl(rgb[0] / 255.0, rgb[1] / 255.0, rgb[2] / 255.0)
self.color = 7 # default is blac
if hsl[2]:
self.color = 1 + (int(6 * hsl[0] + 0.5) % 6) # use 6 hues
if not isinstance(node, (PathElement, Rectangle, Line, Circle, Ellipse)):
return
# Transforming /after/ superpath is more reliable than before
# because of some issues with arcs in transformations
# path = node.path.transform(Transform(mat) @ node.transform)
path = node.path.to_superpath().transform(Transform(mat) @ node.transform)
# first_coord = [path[0][0][1][0], path[0][0][1][1]]
inkex.utils.debug('shape')
inkex.utils.debug(path[0][0][1])
inkex.utils.debug(path[0][1][1])
# inkex.utils.debug(first_coord)
# If Flatten Beziers is enabled, subdivide our beziers and
# we'll later just ignore the curve and output flat lines
# if self.options.FLATTENBEZ:
# bezier.cspsubdiv(path, 0.1) # default to most detailed (0.1)
# Now output the path.
for sub in path:
for i in range(len(sub) - 1):
s = sub[i]
e = sub[i + 1]
# If flattening beziers, ignore curves and output flat lines
# if (s[1] == s[2] and e[0] == e[1]) or self.options.FLATTENBEZ:
if (s[1] == s[2] and e[0] == e[1]):
# if self.options.POLY:
# self.LWPOLY_line([s[1], e[1]])
# else:
self.dxf_line(block, [s[1], e[1]], insert_point)
# elif self.options.ROBO:
# self.ROBO_spline([s[1], s[2], e[0], e[1]])
# else:
# self.dxf_spline([s[1], s[2], e[0], e[1]])
# return first_coord
def process_clone(self, node):
"""Process a clone node, looking for internal paths"""
trans = node.get("transform")
x = node.get("x")
y = node.get("y")
mat = Transform([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]])
if trans:
mat @= Transform(trans)
if x:
mat @= Transform([[1.0, 0.0, float(x)], [0.0, 1.0, 0.0]])
if y:
mat @= Transform([[1.0, 0.0, 0.0], [0.0, 1.0, float(y)]])
# push transform
if trans or x or y:
self.groupmat.append(Transform(self.groupmat[-1]) @ mat)
# get referenced node
refid = node.get("xlink:href")
refnode = self.svg.getElementById(refid[1:])
if refnode is not None:
if isinstance(refnode, Group):
self.process_group(refnode)
elif isinstance(refnode, Use):
self.process_clone(refnode)
else:
self.process_shape(refnode, self.groupmat[-1])
# pop transform
if trans or x or y:
self.groupmat.pop()
def process_group(self, group):
"""Process group elements"""
if isinstance(group, Layer):
# style = group.style
# if (
# style("display") == "none"
# and self.options.layer_option
# and self.options.layer_option == "visible"
# ):
# return
layer = group.label
# if self.options.layer_name and self.options.layer_option == "name":
# if not layer.lower() in self.options.layer_name:
# return
# layer = layer.replace(" ", "_")
# if layer in self.layers:
self.layer = layer
block_def = self.dxf.blocks.new(str(uuid4()))
trans = group.get("transform")
insert_point = []
if trans:
self.groupmat.append(Transform(self.groupmat[-1]) @ Transform(trans))
for node in group:
try:
if isinstance(node, Group):
self.process_group(node)
elif isinstance(node, Use):
self.process_clone(node)
else:
if not insert_point:
insert_point = get_insert_point(node, self.groupmat[-1])
self.process_shape(node, self.groupmat[-1], block_def, insert_point)
except RecursionError as e:
raise inkex.AbortExtension(
_(
'Too many nested groups. Please use the "Deep Ungroup" extension first.'
)
) from e # pylint: disable=line-too-long
if trans:
self.groupmat.pop()
inkex.utils.debug(insert_point)
if insert_point:
inkex.utils.debug(block_def.name)
self.msp.add_blockref(
name=block_def.name,
insert=insert_point,
dxfattribs={"layer": self.layer}
)
def save(self, stream):
# # Warn user if name match field is empty
# if (
# self.options.layer_option
# and self.options.layer_option == "name"
# and not self.options.layer_name
# ):
# return inkex.errormsg(
# _(
# "Error: Field 'Layer match name' must be filled when using "
# "'By name match' option"
# )
# )
# if len(self.svg.xpath("//svg:use|//svg:flowRoot|//svg:text")) > 0:
# self.preprocess(["flowRoot", "text"])
# # Create layers from IfcClasses
# # Split user layer data into a list: "layerA,layerb,LAYERC" becomes ["layera", "layerb", "layerc"]
# if self.options.layer_name:
# self.options.layer_name = self.options.layer_name.lower().split(",")
# # References: Minimum Requirements for Creating a DXF File of a 3D Model By Paul Bourke
# # NURB Curves: A Guide for the Uninitiated By Philip J. Schneider
# # The NURBS Book By Les Piegl and Wayne Tiller (Springer, 1995)
# # self.dxf_add("999\nDXF created by Inkscape\n") # Some programs do not take comments in DXF files (KLayout 0.21.12 for example)
# if self.options.unit_from_document:
# unit = self.svg.document_unit
# else:
# unit = self.options.units
# with open(self.get_resource("dxf14_header.txt"), "r") as fhl:
# header = fhl.read()
# unit_map = {"px": 0, "in": 1, "ft": 2, "mm": 4, "cm": 5, "m": 6}
# header = header.replace("<unit specifier>", str(unit_map.get(unit, 0)))
# self.dxf_add(header)
# for node in self.svg.xpath("//svg:g"):
# if isinstance(node, Layer):
# layer = node.label
# self.layernames.append(layer.lower())
# if (
# self.options.layer_name
# and self.options.layer_option
# and self.options.layer_option == "name"
# and not layer.lower() in self.options.layer_name
# ):
# continue
# layer = layer.replace(" ", "_")
# if layer and layer not in self.layers:
# self.layers.append(layer)
# self.dxf_add(
# " 2\nLAYER\n 5\n2\n100\nAcDbSymbolTable\n 70\n%s\n" % len(self.layers)
# )
# for i in range(len(self.layers)):
# self.dxf_add(
# " 0\nLAYER\n 5\n%x\n100\nAcDbSymbolTableRecord\n100\nAcDbLayerTableRecord\n 2\n%s\n 70\n0\n 6\nCONTINUOUS\n"
# % (i + 80, self.layers[i])
# )
# with open(self.get_resource("dxf14_style.txt"), "r") as fhl:
# self.dxf_add(fhl.read())
# # Set toplevel transform
scale = self.svg.inkscape_scale
self.groupmat = [
[[scale, 0.0, 0.0], [0.0, -scale, self.svg.viewbox_height * scale]]
]
# self.process_group(self.svg)
# if self.options.ROBO:
# self.ROBO_output()
# if self.options.POLY:
# self.LWPOLY_output()
# with open(self.get_resource("dxf14_footer.txt"), "r") as fhl:
# self.dxf_add(fhl.read())
# # Warn user if layer data seems wrong
# if (
# self.options.layer_name
# and self.options.layer_option
# and self.options.layer_option == "name"
# ):
# for layer in self.options.layer_name:
# if layer not in self.layernames:
# inkex.errormsg(_("Warning: Layer '{}' not found!").format(layer))
self.dxf = ezdxf.new()
self.msp = self.dxf.modelspace()
self.svg = class2layer(self, self.svg)
self.process_group(self.svg)
stream.write(to_binary_data(self.dxf))
if __name__ == "__main__":
EzDxfExporter().run()