-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
209 lines (157 loc) · 5.65 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
import pickle
import yaml
import sys
import subprocess
from datetime import datetime
import filenames as fp
import csv
params_file = "params.yaml"
log_file = "log.txt"
report_file = "experiments.txt"
######## logger
def logger(message, log_file=log_file):
print(message)
original_stdout = sys.stdout # Save a reference to the original standard output
with open(log_file, 'a') as f:
sys.stdout = f # Change the standard output to the file we created.
print(message)
sys.stdout = original_stdout # Reset the standard output to its original value
def write_experiment(message, report_file=report_file):
commit = subprocess.check_output(["git", "describe", "--always"]).strip().decode()
now = datetime.now()
timestamp = now.strftime("%d/%m/%Y %H:%M:%S")
message = " ".join([commit, timestamp, message, "\n"])
report_file = os.path.join(fp.resuls_path, report_file)
with open(report_file, 'a') as f:
f.write(message)
######### pickles
def save_pickle(paths, filename, data):
filepaths = os.path.join(paths)
if not os.path.exists(filepaths):
os.makedirs(filepaths)
file = os.path.join(filepaths, filename)
with open(file, 'wb') as data_file:
pickle.dump(data, data_file)
def load_pickle(paths, filename):
filepaths = os.path.join(paths)
file = os.path.join(filepaths, filename)
with open(file, 'rb') as data_file:
data = pickle.load(data_file)
return data
def remove_pickle(paths, filename):
filepaths = os.path.join(paths)
file = os.path.join(filepaths, filename)
if os.path.exists(file):
os.remove(file)
def check_pickle(paths, filename):
filepaths = os.path.join(paths)
if os.path.exists(filepaths):
file = os.path.join(filepaths, filename)
return os.path.isfile(file)
else:
return False
def write_csv(eval_resuls):
data = {}
data["commit hash"] = subprocess.check_output(["git", "describe", "--always"]).strip().decode()
now = datetime.now()
dt_string = now.strftime("%d/%m/%Y %H:%M:%S")
data["timestamp"] = dt_string
params = load_parameters()
data.update(params)
data.update(eval_resuls)
erisk_eval_file = os.path.join(fp.resuls_path, fp.erisk_eval_filename)
csv_file = erisk_eval_file
csv_columns = data.keys()
dict_data = [data]
try:
with open(csv_file, 'a') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=csv_columns)
if os.path.getsize(csv_file) == 0:
writer.writeheader()
for data in dict_data:
writer.writerow(data)
except IOError:
print("I/O error")
######## parameters
def load_parameters():
with open(params_file) as f:
params = yaml.load(f, Loader=yaml.FullLoader)
return params
def update_parameters(params):
with open(params_file, 'w') as f:
yaml.safe_dump(params, f, default_flow_style=False)
return params
########## erisk evaluation
def penalty(delay):
import numpy as np
p = 0.0078
pen = -1.0 + 2.0 / (1 + np.exp(-p * (delay - 1)))
return (pen)
def eval_performance(run_results, qrels):
import numpy as np
total_pos = n_pos(qrels)
true_pos = 0
true_neg = 0
false_pos = 0
false_neg = 0
erdes5 = np.zeros(len(run_results))
erdes50 = np.zeros(len(run_results))
ierdes = 0
latency_tps = list()
penalty_tps = list()
for r in run_results:
try:
# print(qrels[ r['nick'] ], r['decision'], r['nick'], qrels[ r['nick'] ] == r['decision'] )
if (qrels[r['nick']] == r['decision']):
if (r['decision'] == 1):
# print('dec = 1')
true_pos += 1
erdes5[ierdes] = 1.0 - (1.0 / (1.0 + np.exp((r['sequence'] + 1) - 5.0)))
erdes50[ierdes] = 1.0 - (1.0 / (1.0 + np.exp((r['sequence'] + 1) - 50.0)))
latency_tps.append(r['sequence'] + 1)
penalty_tps.append(penalty(r['sequence'] + 1))
else:
# print('dec = 0')
true_neg += 1
erdes5[ierdes] = 0
erdes50[ierdes] = 0
else:
if (r['decision'] == 1):
# print('++')
false_pos += 1
erdes5[ierdes] = float(total_pos) / float(len(qrels))
erdes50[ierdes] = float(total_pos) / float(len(qrels))
else:
# print('****')
false_neg += 1
erdes5[ierdes] = 1
erdes50[ierdes] = 1
except KeyError:
print("User does not appear in the qrels:" + r['nick'])
ierdes += 1
if (true_pos == 0):
precision = 0
recall = 0
F1 = 0
else:
precision = float(true_pos) / float(true_pos + false_pos)
recall = float(true_pos) / float(total_pos)
F1 = 2 * (precision * recall) / (precision + recall)
speed = 1 - np.median(np.array(penalty_tps))
eval_results = {}
eval_results['precision'] = precision
eval_results['recall'] = recall
eval_results['F1'] = F1
eval_results['ERDE_5'] = np.mean(erdes5)
eval_results['ERDE_50'] = np.mean(erdes50)
eval_results['median_latency_tps'] = np.median(np.array(latency_tps))
eval_results['median_penalty_tps'] = np.median(np.array(penalty_tps))
eval_results['speed'] = speed
eval_results['latency_weighted_f1'] = F1 * speed
return eval_results
def n_pos(qrels):
total_pos = 0
for key in qrels:
total_pos += qrels[key]
return (total_pos)