-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
126 lines (101 loc) · 3.58 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from utils import load_parameters
from prepare import main as prepare
from windowfy import main as windowfy
from text_featurize import main as text_featurize
from tfidf_featurize import tfidf as tfidf_featurize
from tfidf_featurize import ngrams as ngram_featurize
from combine_features import main as combine_features
from train import main as train
from classify import main as classify
from evaluate import main as evaluate
from evaluate_erisk import main as eval_erisk
from utils import update_parameters
from utils import logger
import filenames as fp
import numpy as np
import os
import random as rn
from utils import write_experiment
from utils import write_csv
from statistics import mean
from experiment_settings import get_experiment_settings
last_experiment = {}
def test(params, random=False):
logger("Starting experiment params {}".format(params))
#
# if random:
logger("Windowfying data")
windowfy()
if params["feats"] == "text" or params["feats"] == "combined":
logger("Creating text features")
text_featurize()
if params["feats"] == "tfidf" or params["feats"] == "combined":
logger("Creating tfidf features")
if params["tfidf_ngrams"]:
ngram_featurize()
else:
tfidf_featurize()
if params["feats"] == "combined":
logger("Combining features")
combine_features()
logger("Training {}".format(params["classifier"]))
train()
# logger("Classifying")
# classify()
#
# #print("Evaluating")
# #evaluate()
# logger("Evaluating erisk")
# eval = eval_erisk()
#
# logger("Fin experiment {}".format(params))
# return eval
params_history = []
def experiments():
os.environ['PYTHONHASHSEED'] = '0'
np.random.seed(42)
rn.seed(121412)
cross_validation = False
cross_validation_n = 1
repeat_experiments = False
experiments = get_experiment_settings()
if cross_validation:
for experiment in experiments:
all_eval = {'speed': [], 'latency_weighted_f1': []}
for validation in range(0, cross_validation_n):
eval = do_experiment(experiment.copy(), repeat_experiments, random=True)
all_eval["speed"].append(eval["speed"])
all_eval["latency_weighted_f1"].append(eval("latency_weighted_f1"))
mean_eval = get_mean(all_eval)
write_csv(mean_eval)
else:
for experiment in experiments:
eval = do_experiment(experiment.copy(), repeat_experiments)
if eval is not None:
write_csv(eval)
print("ENDED EXPERIMENTS")
# want to test all combinations
def do_experiment(experiment_params, repeat_experiments, random=False):
if experiment_params not in params_history or repeat_experiments:
params_history.append(experiment_params.copy())
update_parameters(experiment_params.copy())
#eval = test(experiment_params.copy(), random)
try:
eval = test(experiment_params.copy(), random)
except Exception as e:
logger("failed params:{}".format(experiment_params))
logger("Exception: {}".format(e))
eval = None
else:
logger("Skipping duplicated params {}".format(experiment_params))
eval = None
return eval
def get_mean(evals):
new_evals = {}
for key, values in evals.items():
new_evals[key] = mean(values)
return new_evals
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
experiments()
# See PyCharm help at https://www.jetbrains.com/help/pycharm/