-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiment_settings.py
46 lines (34 loc) · 1.44 KB
/
experiment_settings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from utils import write_experiment
from sklearn.model_selection import ParameterGrid
import pandas as pd
def get_experiment_settings():
new_params = {}
new_params["training_run"] = [4]
new_params["feats_window_size"] = [10]
new_params["eval_window_size"] = [1]
new_params["classifier"] = ["svm"]
new_params["strategy"] = ["weights"]
new_params["train_pos_range_max"] = [100]
new_params["train_neg_range_max"] = [100]
new_params["test_range_max"] = [100]
new_params["max_features"] = [5000]
new_params["weights_type"] = ["all"]
new_params["weights_window_size"] = [100]
new_params["feats"] = ["combined"]
new_params["text_features"] = ["run4"] # all, select
new_params["prons"] = [True]
new_params["nssi"] = [True]
new_params["tfidf_type"] = ["positives"]
new_params["tfidf_ngrams"] = [False]
new_params["discretize"] = [True]
new_params["discretize_size"] = [50] # 50, 72, 100, etc
new_params["discretize_strategy"] = ['quantile'] # uniform, quantile, kmeans
new_params["discretize_encode"] = ['onehot'] # onehot, onehot-dense, ordinal
write_experiment("Testing eval window size with sizes 1, 3, 5, and 10")
experiments = list(ParameterGrid(new_params))
experiments = pd.DataFrame(experiments).drop_duplicates().to_dict('records')
print(experiments)
print(len(experiments))
return experiments
if __name__ == '__main__':
get_experiment_settings()