-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_erisk.py
175 lines (130 loc) · 5.5 KB
/
evaluate_erisk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# evaluation for the erisk task
# comes after classify.py
from utils import eval_performance
import csv
import os
from utils import load_pickle
import filenames as fp
import numpy as np
from utils import load_parameters
from utils import logger
from datetime import datetime
import subprocess
def main():
params = load_parameters()
feats_window_size = params["feats_window_size"]
window_size = params["eval_window_size"]
resuls_path = fp.get_resuls_path()
window_path = fp.get_window_path()
g_truth = load_golden_truth(fp.g_truth_filename)
test_resuls = load_pickle(resuls_path, fp.resul_file)
test_scores = load_pickle(resuls_path, fp.score_file)
test_x = load_pickle(window_path, fp.test_x_filename)
user_resul = prepare_data(test_x, test_resuls)
user_scores = prepare_data(test_x, test_scores)
test_resul_proc = process_decisions_w2(user_resul, user_scores, feats_window_size, max_strategy=window_size)
eval_resuls = eval_performance(test_resul_proc, g_truth)
write_csv(eval_resuls)
logger(eval_resuls)
def write_csv(eval_resuls):
data = {}
data["commit hash"] = subprocess.check_output(["git", "describe", "--always"]).strip().decode()
now = datetime.now()
dt_string = now.strftime("%d/%m/%Y %H:%M:%S")
data["timestamp"] = dt_string
params = load_parameters()
data.update(params)
data.update(eval_resuls)
erisk_eval_file = os.path.join(fp.resuls_path, fp.erisk_eval_filename)
csv_file = erisk_eval_file
csv_columns = data.keys()
dict_data = [data]
try:
with open(csv_file, 'a') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=csv_columns)
if os.path.getsize(csv_file) == 0:
writer.writeheader()
for data in dict_data:
writer.writerow(data)
except IOError:
print("I/O error")
csv_columns = eval_resuls.keys()
dict_data = [eval_resuls]
def prepare_data(test_x, resul_array):
test_users = np.array(test_x[["user"]]).flatten()
resul_array = resul_array.tolist()
test_users = test_users.tolist()
user_tuples = list(zip(test_users, resul_array))
user_dict = array_to_dict(user_tuples)
return user_dict
def array_to_dict(l):
d = dict()
[d[t[0]].append(t[1]) if t[0] in list(d.keys())
else d.update({t[0]: [t[1]]}) for t in l]
return d
def process_decisions_w2(user_decisions, user_scores, feats_window_size, max_strategy=5):
decision_list = []
new_user_decisions = {}
new_user_sequence = {}
max = max_strategy
for user, decisions in user_decisions.items():
new_user_decisions[user] = []
new_user_sequence[user] = []
# politica de decisiones: decidimos que un usuario es positivo a partir del 5 mensaje positivo consecutivo
# a partir de ahi, todas las decisiones deben ser positivas, y la secuencia mantenerse estable
for user, decisions in user_decisions.items():
count = 0
for i in range(0, len(decisions)):
if decisions[i] == 0 and count < max:
count = 0
new_user_decisions[user].append(0)
new_user_sequence[user].append(i)
elif decisions[i] == 1 and count < max:
count = count + 1
new_user_decisions[user].append(0)
new_user_sequence[user].append(i)
elif count >= max:
new_user_decisions[user].append(1)
new_user_sequence[user].append(new_user_sequence[user][i - 1])
# lo montamos en el formato que acepta el evaluador
for user, decisions in new_user_decisions.items():
decision_list.append(
{"nick": user, "decision": new_user_decisions[user][-1], "sequence": new_user_sequence[user][-1], "score":
user_scores[user][-1]})
return decision_list
def process_decisions_w1(user_decisions, user_scores, feat_window_size, max_strategy=5):
decision_list = []
new_user_decisions = {}
new_user_sequence = {}
max = max_strategy
for user, decisions in user_decisions.items():
new_user_decisions[user] = []
new_user_sequence[user] = []
# politica de decisiones: decidimos que un usuario es positivo a partir del 5 mensaje positivo consecutivo
# a partir de ahi, todas las decisiones deben ser positivas, y la secuencia mantenerse estable
for user, decisions in user_decisions.items():
count = 0
for i in range(0, len(decisions)):
if decisions[i] == 0 and count < max:
count = 0
new_user_decisions[user].append(0)
new_user_sequence[user].append(i+feat_window_size)
elif decisions[i] == 1 and count < max:
count = count +1
new_user_decisions[user].append(0)
new_user_sequence[user].append(i+feat_window_size)
elif count >= max:
new_user_decisions[user].append(1)
new_user_sequence[user].append(new_user_sequence[user][i-1])
# lo montamos en el formato que acepta el evaluador
for user, decisions in new_user_decisions.items():
decision_list.append(
{"nick": user, "decision": new_user_decisions[user][-1], "sequence": new_user_sequence[user][-1], "score":
user_scores[user][-1]})
return decision_list
def load_golden_truth(filename):
g_path = filename
g_truth = {line.split()[0]: int(line.split()[1]) for line in open(g_path)}
return g_truth
if __name__ == '__main__':
main()