-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
35 lines (24 loc) · 1000 Bytes
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# normal classification evaluation
# comes after classify.py
import sklearn.metrics as metrics
from utils import load_pickle
from utils import load_parameters
from utils import logger
import filenames as fp
def main():
params = load_parameters()
resuls_path = fp.get_resuls_path()
window_path = fp.get_window_path()
labels = load_pickle(window_path, fp.test_y_filename)
predictions = load_pickle(resuls_path, fp.resul_file)
classification_report = metrics.classification_report(labels, predictions)
confusion_matrix = metrics.confusion_matrix(labels, predictions)
accuracy_score = metrics.accuracy_score(predictions, labels)
logger(classification_report)
#numpy.savetxt('data/Metrics.txt', classification_report) #todo fix this
logger(confusion_matrix)
#numpy.savetxt('data/Confusion_matrix.txt', confusion_matrix)
logger(accuracy_score)
#numpy.savetxt('data/Accuracy_score.txt', accuracy_score)
if __name__ == '__main__':
main()