-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeepQlearningAgents.py
135 lines (110 loc) · 4.61 KB
/
deepQlearningAgents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from game import *
from learningAgents import ReinforcementAgent
import random,util,math
class DeepQLearningAgent(ReinforcementAgent):
"""
Q-Learning Agent
Functions you should fill in:
- computeValueFromQValues
- computeActionFromQValues
- getQValue
- getAction
- update
Instance variables you have access to
- self.epsilon (exploration prob)
- self.alpha (learning rate)
- self.discount (discount rate)
Functions you should use
- self.getLegalActions(state)
which returns legal actions for a state
"""
def __init__(self, **args):
"You can initialize Q-values here..."
ReinforcementAgent.__init__(self, **args)
"*** YOUR CODE HERE ***"
# TODO inicializar la red neuronal (o cargarla de memoria)
# TODO inicializar la memoria o lo que sea?
# self.QValueCounter = util.Counter()
def getQValue(self, state, action):
"""
Returns Q(state,action)
Should return 0.0 if we have never seen a state
or the Q node value otherwise
"""
"*** YOUR CODE HERE ***"
return self.QValueCounter[(state, action)]
def getQValues(self, state):
"""
Returns collection of Qs(state)
"""
# TODO pasar el
def computeValueFromQValues(self, state):
"""
Returns max_action Q(state,action)
where the max is over legal actions. Note that if
there are no legal actions, which is the case at the
terminal state, you should return a value of 0.0.
"""
"*** YOUR CODE HERE ***"
if not self.getLegalActions(state): return 0
best_action = self.computeActionFromQValues(state)
return self.getQValue(state, best_action)
def computeActionFromQValues(self, state):
"""
Compute the best action to take in a state. Note that if there
are no legal actions, which is the case at the terminal state,
you should return None.
"""
"*** YOUR CODE HERE ***"
if not self.getLegalActions(state): return None
best_action = None
best_value = float('-inf')
qvalues = self.getQValues(state)
for value in qvalues:
if value > best_value: # TODO comprobar que la accion es legal
best_value = value
return best_action
# for action in self.getLegalActions(state):
# if self.getQValue(state, action) > best_value:
# best_value = self.getQValue(state, action)
# best_action = action
# return best_action
def getAction(self, state):
"""
Compute the action to take in the current state. With
probability self.epsilon, we should take a random action and
take the best policy action otherwise. Note that if there are
no legal actions, which is the case at the terminal state, you
should choose None as the action.
HINT: You might want to use util.flipCoin(prob)
HINT: To pick randomly from a list, use random.choice(list)
"""
# Pick Action
legalActions = self.getLegalActions(state)
action = None
"*** YOUR CODE HERE ***"
if not self.getLegalActions(state): return None # Terminal State, return None
if self.epsilon > random.random():
action = random.choice(legalActions) # Explore
else:
action = self.computeActionFromQValues(state) # Exploit
return action
def update(self, state, action, nextState, reward):
"""
The parent class calls this to observe a
state = action => nextState and reward transition.
You should do your Q-Value update here
NOTE: You should never call this function,
it will be called on your behalf
"""
"*** YOUR CODE HERE ***"
# TODO coger estado actual y guardarlo en la memoria
# TODO recuperar estados de la memoria y entrenar la red neuronal
# best_action = self.computeActionFromQValues(nextState)
# self.QValueCounter[(state, action)] = ((1 - self.alpha) * self.getQValue(state, action) +
# self.alpha * (reward + self.discount * self.getQValue(nextState,
# best_action)))
def getPolicy(self, state):
return self.computeActionFromQValues(state)
def getValue(self, state):
return self.computeValueFromQValues(state)