-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeatureqlearningAgents.py
440 lines (367 loc) · 16 KB
/
featureqlearningAgents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
# qlearningAgents.py
# ------------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel ([email protected]).
from game import *
from learningAgents import ReinforcementAgent
from featureExtractors import *
import random,util,math,pickle
class Cuadrants:
NORTHWEST = 'Northwest'
NORTHEAST = 'Northeast'
SOUTHWEST = 'Southwest'
SOUTHEAST = 'Southeast'
NORTH = 'North'
SOUTH = 'South'
EAST = 'East'
WEST = 'West'
CENTER = 'Center'
class NewQLearningAgent(ReinforcementAgent):
"""
Q-Learning Agent
Functions you should fill in:
- computeValueFromQValues
- computeActionFromQValues
- getQValue
- getAction
- update
Instance variables you have access to
- self.epsilon (exploration prob)
- self.alpha (learning rate)
- self.discount (discount rate)
Functions you should use
- self.getLegalActions(state)
which returns legal actions for a state
"""
def __init__(self, extractor='MyFeatureExtractor', **args):
"You can initialize Q-values here..."
self.featExtractor = util.lookup(extractor, globals())()
ReinforcementAgent.__init__(self, **args)
"*** YOUR CODE HERE ***"
self.QValueCounter = util.Counter()
# uncomment to load existing qvalues
# loading existing weights
# self.loadTableFromFile('tables/gridnewfeatures.pkl')
def getQValue(self, state, action):
"""
Returns Q(state,action)
Should return 0.0 if we have never seen a state
or the Q node value otherwise
"""
"*** YOUR CODE HERE ***"
stateFeatures = self.getFeaturesFromState(state)
return self.QValueCounter[(stateFeatures, action)]
def computeValueFromQValues(self, state):
"""
Returns max_action Q(state,action)
where the max is over legal actions. Note that if
there are no legal actions, which is the case at the
terminal state, you should return a value of 0.0.
"""
"*** YOUR CODE HERE ***"
if not self.getLegalActions(state): return 0
#stateFeatures = self.getFeaturesFromState(state)
best_action = self.computeActionFromQValues(state)
return self.getQValue(state, best_action)
def computeActionFromQValues(self, state):
"""
Compute the best action to take in a state. Note that if there
are no legal actions, which is the case at the terminal state,
you should return None.
"""
"*** YOUR CODE HERE ***"
if not self.getLegalActions(state): return None
best_action = None
best_value = float('-inf')
#stateFeatures = self.getFeaturesFromState(state)
for action in self.getLegalActions(state):
if self.getQValue(state, action) > best_value:
best_value = self.getQValue(state, action)
best_action = action
return best_action
def getAction(self, state):
"""
Compute the action to take in the current state. With
probability self.epsilon, we should take a random action and
take the best policy action otherwise. Note that if there are
no legal actions, which is the case at the terminal state, you
should choose None as the action.
HINT: You might want to use util.flipCoin(prob)
HINT: To pick randomly from a list, use random.choice(list)
"""
# Pick Action
legalActions = self.getLegalActions(state)
action = None
"*** YOUR CODE HERE ***"
if not self.getLegalActions(state): return None # Terminal State, return None
if self.epsilon > random.random():
action = random.choice(legalActions) # Explore
else:
action = self.computeActionFromQValues(state) # Exploit
return action
def update(self, state, action, nextState, reward):
"""
The parent class calls this to observe a
state = action => nextState and reward transition.
You should do your Q-Value update here
NOTE: You should never call this function,
it will be called on your behalf
"""
"*** YOUR CODE HERE ***"
stateFeatures = self.getFeaturesFromState(state)
nextStateFeatures = self.getFeaturesFromState(nextState)
best_action = self.computeActionFromQValues(nextState)
self.QValueCounter[(stateFeatures, action)] = ((1 - self.alpha) * self.getQValue(state, action) +
self.alpha * (reward + self.discount * self.getQValue(nextState,
best_action)))
def getPolicy(self, state):
stateFeatures = self.getFeaturesFromState(state)
return self.computeActionFromQValues(stateFeatures)
def getValue(self, state):
#stateFeatures = self.getFeaturesFromState(state)
return self.computeValueFromQValues(state)
def saveTableToFile(self, filename):
with open(filename, 'wb') as output: # Overwrites any existing file.
#print "Saving QValueCounter of size: ", len(self.QValueCounter)
pickle.dump(self.QValueCounter, output, pickle.HIGHEST_PROTOCOL)
def loadTableFromFile(self, filename):
with open(filename, 'rb') as input:
self.QValueCounter = pickle.load(input)
print "Size of loaded table: ", len(self.QValueCounter)
def final(self, state):
ReinforcementAgent.final(self, state)
if self.episodesSoFar <= self.numTraining:
self.saveTableToFile('featuresqtable.pkl')
def getFeaturesFromState(self, state):
#print "features: ", self.featExtractor.getFeatures(state, None)
return self.featExtractor.getFeatures(state, None)
def __del__(self):
print "Qtable size: ", len(self.QValueCounter)
class PacmanFeatureQAgent(NewQLearningAgent):
"Exactly the same as QLearningAgent, but with different default parameters"
def __init__(self, epsilon=0.05,gamma=0.8,alpha=0.2, numTraining=0, **args):
"""
These default parameters can be changed from the pacman.py command line.
For example, to change the exploration rate, try:
python pacman.py -p PacmanQLearningAgent -a epsilon=0.1
alpha - learning rate
epsilon - exploration rate
gamma - discount factor
numTraining - number of training episodes, i.e. no learning after these many episodes
"""
args['epsilon'] = epsilon
args['gamma'] = gamma
args['alpha'] = alpha
args['numTraining'] = numTraining
self.index = 0 # This is always Pacman
NewQLearningAgent.__init__(self, **args)
def getAction(self, state):
"""
Simply calls the getAction method of QLearningAgent and then
informs parent of action for Pacman. Do not change or remove this
method.
"""
#print 'Starting getAction'
action = NewQLearningAgent.getAction(self,state)
self.doAction(state,action)
return action
class PacmanNewFeatureQAgent(PacmanFeatureQAgent):
def getFeaturesFromState(self, state):
#print "features: ", self.featExtractor.getFeatures(state, None)
food = state.getFood()
walls = state.getWalls()
ghosts = state.getGhostPositions()
selfPosition = state.getPacmanPosition()
# new: take into account capsules and scared ghosts
capsules = state.getCapsules()
ghostStates = state.getGhostStates()
nearestGhostPosition = self.closestGhost(selfPosition, ghosts, walls, ghostStates)
nearestScaredGhostPosition = self.closestScaredGhost(selfPosition, ghosts, walls, ghostStates)
nearestFoodPosition = self.closestFood(selfPosition, food, walls)
nearestPillPosition = self.closestCapsule(selfPosition, capsules, walls)
if nearestFoodPosition is None:
foodDistance = Cuadrants.CENTER
else:
foodDistance = self.getQuadrant(selfPosition, nearestFoodPosition)
if nearestGhostPosition is None:
ghostDistance = Cuadrants.CENTER
else:
ghostDistance = self.getQuadrant(selfPosition, nearestGhostPosition)
if nearestScaredGhostPosition is None:
scaredGhostDistance = Cuadrants.CENTER
else:
scaredGhostDistance = self.getQuadrant(selfPosition, nearestScaredGhostPosition)
if nearestPillPosition is None:
capsuleDistance = Cuadrants.CENTER
else:
capsuleDistance = self.getQuadrant(selfPosition, nearestPillPosition)
closest = self.getClosest(selfPosition, walls, food, ghosts, ghostStates)
return (foodDistance, ghostDistance, scaredGhostDistance, capsuleDistance, closest)
def distanceClosestFood(self, pos, food, walls):
"""
closestFood -- this is similar to the function that we have
worked on in the search project; here its all in one place
"""
fringe = [(pos[0], pos[1], 0)]
expanded = set()
while fringe:
pos_x, pos_y, dist = fringe.pop(0)
if (pos_x, pos_y) in expanded:
continue
expanded.add((pos_x, pos_y))
# if we find a food at this location then exit
if food[pos_x][pos_y]:
return dist
# otherwise spread out from the location to its neighbours
nbrs = Actions.getLegalNeighbors((pos_x, pos_y), walls)
for nbr_x, nbr_y in nbrs:
fringe.append((nbr_x, nbr_y, dist + 1))
# no food found
return None
def distanceClosestGhost(self, pos, ghosts, walls, ghostStates):
"""
closestScaredGhost -- this is similar to the closestFood function, but for
scared ghost.
"""
fringe = [(pos[0], pos[1], 0)]
expanded = set()
while fringe:
pos_x, pos_y, dist = fringe.pop(0)
if (pos_x, pos_y) in expanded:
continue
expanded.add((pos_x, pos_y))
# if we find a scared ghost at this location then exit
if any(ghost == (pos_x, pos_y) and ghostStates[ghosts.index(ghost)].scaredTimer <= 0 for ghost in ghosts):
return dist
# otherwise spread out from the location to its neighbours
nbrs = Actions.getLegalNeighbors((pos_x, pos_y), walls)
for nbr_x, nbr_y in nbrs:
fringe.append((nbr_x, nbr_y, dist + 1))
# no scared ghost found
return None
def closestFood(self, pos, food, walls):
"""
closestFood -- this is similar to the function that we have
worked on in the search project; here its all in one place
"""
fringe = [(pos[0], pos[1], 0)]
expanded = set()
while fringe:
pos_x, pos_y, dist = fringe.pop(0)
if (pos_x, pos_y) in expanded:
continue
expanded.add((pos_x, pos_y))
# if we find a food at this location then exit
if food[pos_x][pos_y]:
return pos_x, pos_y
# otherwise spread out from the location to its neighbours
nbrs = Actions.getLegalNeighbors((pos_x, pos_y), walls)
for nbr_x, nbr_y in nbrs:
fringe.append((nbr_x, nbr_y, dist + 1))
# no food found
return None
def closestGhost(self, pos, ghosts, walls, ghostStates):
"""
closestScaredGhost -- this is similar to the closestFood function, but for
scared ghost.
"""
fringe = [(pos[0], pos[1], 0)]
expanded = set()
while fringe:
pos_x, pos_y, dist = fringe.pop(0)
if (pos_x, pos_y) in expanded:
continue
expanded.add((pos_x, pos_y))
# if we find a scared ghost at this location then exit
if any(ghost == (pos_x, pos_y) and ghostStates[ghosts.index(ghost)].scaredTimer <= 0 for ghost in ghosts):
return pos_x, pos_y
# otherwise spread out from the location to its neighbours
nbrs = Actions.getLegalNeighbors((pos_x, pos_y), walls)
for nbr_x, nbr_y in nbrs:
fringe.append((nbr_x, nbr_y, dist + 1))
# no scared ghost found
return None
def closestScaredGhost(self, pos, ghosts, walls, ghostStates):
"""
closestScaredGhost -- this is similar to the closestFood function, but for
scared ghost.
"""
fringe = [(pos[0], pos[1], 0)]
expanded = set()
while fringe:
pos_x, pos_y, dist = fringe.pop(0)
if (pos_x, pos_y) in expanded:
continue
expanded.add((pos_x, pos_y))
# if we find a scared ghost at this location then exit
if any(ghost == (pos_x, pos_y) and ghostStates[ghosts.index(ghost)].scaredTimer > 0 for ghost in ghosts):
return pos_x, pos_y
# otherwise spread out from the location to its neighbours
nbrs = Actions.getLegalNeighbors((pos_x, pos_y), walls)
for nbr_x, nbr_y in nbrs:
fringe.append((nbr_x, nbr_y, dist + 1))
# no scared ghost found
return None
def closestCapsule(self, pos, capsules, walls):
"""
closestCapsule -- this is similar to the closestFood function, but for
scared ghost.
"""
fringe = [(pos[0], pos[1], 0)]
expanded = set()
while fringe:
pos_x, pos_y, dist = fringe.pop(0)
if (pos_x, pos_y) in expanded:
continue
expanded.add((pos_x, pos_y))
# if we find a scared ghost at this location then exit
if any(capsule == (pos_x, pos_y) for capsule in capsules):
return pos_x, pos_y
# otherwise spread out from the location to its neighbours
nbrs = Actions.getLegalNeighbors((pos_x, pos_y), walls)
for nbr_x, nbr_y in nbrs:
fringe.append((nbr_x, nbr_y, dist + 1))
# no scared ghost found
return None
def getQuadrant(self, pacmanPosition, position):
if position == None:
return None
if position[0] == pacmanPosition[0]:
if position[1] < pacmanPosition[1]:
return Cuadrants.SOUTH
elif position[1] == pacmanPosition[1]:
return Cuadrants.CENTER
else:
return Cuadrants.NORTH
elif position[1] == pacmanPosition[1]:
if position[0] < pacmanPosition[0]:
return Cuadrants.EAST
else:
return Cuadrants.WEST
elif position[0] < pacmanPosition[0]:
if position[1] < pacmanPosition[1]:
return Cuadrants.SOUTHWEST
else:
return Cuadrants.NORTHWEST
else:
if position[1] < pacmanPosition[1]:
return Cuadrants.SOUTHEAST
else:
return Cuadrants.NORTHEAST
# food closest: 0, ghost closest or same distance: 1
def getClosest(self, pos, walls, food, ghosts, ghostStates):
ghostDistance = self.distanceClosestGhost(pos, ghosts, walls, ghostStates)
if ghostDistance is None:
ghostDistance = 1000
if ghostDistance <= 1:
return 1
else:
return 0