-
Notifications
You must be signed in to change notification settings - Fork 35
/
agent.mli
154 lines (127 loc) · 4.67 KB
/
agent.mli
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
(************************************************************************)
(* Flèche => RL agent: petanque *)
(* Copyright 2019 MINES ParisTech -- Dual License LGPL 2.1 / GPL3+ *)
(* Copyright 2019-2024 Inria -- Dual License LGPL 2.1 / GPL3+ *)
(* Written by: Emilio J. Gallego Arias & coq-lsp contributors *)
(************************************************************************)
(** Petanque.Agent *)
module State : sig
(** Full state of Coq *)
type t
val name : string
(** OCaml poly Coq state hash; tuned for interactive edition. *)
val hash : t -> int
module Inspect : sig
type t =
| Physical (** Flèche-based "almost physical" state eq *)
| Goals
(** Full goal equality; must faster than calling goals as it won't
unelaborate them. Note that this may not fully capture proof state
equality (it is possible to have similar goals but different
evar_maps, but should be enough for all practical users. *)
end
(** [equal ?kind st1 st2] [kind] defaults to [Inspect.Physical] *)
val equal : ?kind:Inspect.t -> t -> t -> bool
module Proof : sig
(** OCaml poly hash for Coq proof state. *)
type t
(** [equal ?kind st1 st2] [kind] defaults to [Inspect.Physical] *)
val equal : ?kind:Inspect.t -> t -> t -> bool
val hash : t -> int
end
val lemmas : t -> Proof.t option
end
(** Petanque errors *)
module Error : sig
type t =
| Interrupted
| Parsing of string
| Coq of string
| Anomaly of string
| System of string
| Theorem_not_found of string
val to_string : t -> string
val to_code : t -> int
val coq : string -> t
val system : string -> t
end
(** Petanque results *)
module R : sig
type 'a t = ('a, Error.t) Result.t
end
module Run_opts : sig
type t =
{ memo : bool [@default true]
; hash : bool [@default true]
}
end
module Run_result : sig
type 'a t =
{ st : 'a
; hash : int option [@default None]
(** [State.Proof.hash st] if enabled / proof is open. *)
; proof_finished : bool
}
end
(** Protocol notes:
The idea is that the types of the functions here have a direct translation
to the JSON-RPC (or any other) protocol.
Thus, types here correspond to types in the wire, except for cases where the
protocol layer performs an implicit mapping on types.
So far, the mappings are:
- [uri] <-> [Doc.t]
- [int] <-> [State.t]
The [State.t] mapping is easy to do at the protocol level with a simple
mapping, however [uri -> Doc.t] may need to yield to the document manager to
build the corresponding [doc]. This is very convenient for users, but
introduces a little bit more machinery.
We could imagine a future where [State.t] need to be managed asynchronously,
then the same approach that we use for [Doc.t] could happen. *)
(** [start ~token ~doc ~pre_commands ~thm] start a new proof for theorem [thm]
in file [uri] under [fn]. [token] can be used to interrupt the computation.
Returns the proof state or error otherwise. [pre_commands] is a string of
dot-separated Coq commands that will be executed before the proof starts. *)
val start :
token:Coq.Limits.Token.t
-> doc:Fleche.Doc.t
-> ?opts:Run_opts.t
-> ?pre_commands:string
-> thm:string
-> unit
-> State.t Run_result.t R.t
(** [run ~token ?memo ~st ~tac] tries to run [tac] over state [st]. [memo] (by
default true) controls whether the command execution will be memoized in
Flèche incremental engine. *)
val run :
token:Coq.Limits.Token.t
-> ?opts:Run_opts.t
-> st:State.t
-> tac:string
-> unit
-> State.t Run_result.t R.t
(** [goals ~token ~st] return the list of goals for a given [st] *)
val goals :
token:Coq.Limits.Token.t
-> st:State.t
-> string Coq.Goals.reified_pp option R.t
module Premise : sig
module Info : sig
(* (from .glob files) *)
type t =
{ kind : string (* type of object *)
; range : Lang.Range.t option (* a range *)
; offset : int * int (* a offset in the file *)
; raw_text : (string, string) Result.t (* raw text of the premise *)
}
end
type t =
{ full_name : string
(* should be a Coq DirPath, but let's go step by step *)
; file : string (* file (in FS format) where the premise is found *)
; info : (Info.t, string) Result.t (* Info about the object, if available *)
}
end
(** Return the list of defined constants and inductives for a given state. For
now we just return their fully qualified name, but more options are of
course possible. *)
val premises : token:Coq.Limits.Token.t -> st:State.t -> Premise.t list R.t