-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
34 lines (26 loc) · 1.15 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from utils.utils import evaluation
from models import get_model
from datasets import build_dataset
import argparse
from pathlib import Path
import torch
from torch.utils.data import TensorDataset,Dataset,DataLoader,random_split
def get_args_parser():
parser = argparse.ArgumentParser("OCT layer segmentation")
parser.add_argument('--batch_size', default=8,type=int, help='batch size')
parser.add_argument('--input_size', default=224, type=int, help='images input size')
parser.add_argument('--pretrained_model', default='B:/eee/demo/pycharm/oct/weights/transformer/end/DED9.pkl', type=str, help='pretrained model path')
args = parser.parse_args()
return args
def main(args):
ds_valid = build_dataset(is_train=False, args=args)
val_loader = DataLoader(ds_valid, batch_size=args.batch_size)
model = get_model().cuda()
model.load_state_dict(torch.load(args.pretrained_model))
evaluation(model, val_loader)
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
# if args.output_dir:
# Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)