|
| 1 | +/* |
| 2 | + * (C) Copyright 2025- ECMWF. |
| 3 | + * |
| 4 | + * This software is licensed under the terms of the Apache Licence Version 2.0 |
| 5 | + * which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
| 6 | + * In applying this licence, ECMWF does not waive the privileges and immunities |
| 7 | + * granted to it by virtue of its status as an intergovernmental organisation |
| 8 | + * nor does it submit to any jurisdiction. |
| 9 | + */ |
| 10 | + |
| 11 | + |
| 12 | +#include "eckit/linalg/sparse/LinearAlgebraHIP.h" |
| 13 | + |
| 14 | +#include <ostream> |
| 15 | + |
| 16 | +#include "eckit/exception/Exceptions.h" |
| 17 | +#include "eckit/linalg/Matrix.h" |
| 18 | +#include "eckit/linalg/SparseMatrix.h" |
| 19 | +#include "eckit/linalg/Vector.h" |
| 20 | +#include "eckit/linalg/detail/HIP.h" |
| 21 | +#include "eckit/linalg/sparse/LinearAlgebraGeneric.h" |
| 22 | + |
| 23 | + |
| 24 | +namespace eckit { |
| 25 | +namespace linalg { |
| 26 | +namespace sparse { |
| 27 | + |
| 28 | + |
| 29 | +static const LinearAlgebraHIP __la("hip"); |
| 30 | + |
| 31 | + |
| 32 | +void LinearAlgebraHIP::print(std::ostream& out) const { |
| 33 | + out << "LinearAlgebraHIP[]"; |
| 34 | +} |
| 35 | + |
| 36 | + |
| 37 | +void LinearAlgebraHIP::spmv(const SparseMatrix& A, const Vector& x, Vector& y) const { |
| 38 | + ASSERT(x.size() == A.cols() && y.size() == A.rows()); |
| 39 | + // We expect indices to be 0-based |
| 40 | + ASSERT(A.outer()[0] == 0); |
| 41 | + const Size sizeArowptr = (A.rows() + 1) * sizeof(Index); |
| 42 | + const Size sizeAcolidx = A.nonZeros() * sizeof(Index); |
| 43 | + const Size sizeAvalues = A.nonZeros() * sizeof(Scalar); |
| 44 | + const Size sizex = A.cols() * sizeof(Scalar); |
| 45 | + const Size sizey = A.rows() * sizeof(Scalar); |
| 46 | + |
| 47 | + Index* d_A_rowptr; ///< device memory matrix A row pointers |
| 48 | + Index* d_A_colidx; ///< device memory matrix A col indices |
| 49 | + Scalar* d_A_values; ///< device memory matrix A values |
| 50 | + Scalar* d_x; ///< device memory vector x |
| 51 | + Scalar* d_y; ///< device memory vector y |
| 52 | + |
| 53 | + CALL_HIP(hipMalloc((void**)&d_A_rowptr, sizeArowptr)); |
| 54 | + CALL_HIP(hipMalloc((void**)&d_A_colidx, sizeAcolidx)); |
| 55 | + CALL_HIP(hipMalloc((void**)&d_A_values, sizeAvalues)); |
| 56 | + CALL_HIP(hipMalloc((void**)&d_x, sizex)); |
| 57 | + CALL_HIP(hipMalloc((void**)&d_y, sizey)); |
| 58 | + |
| 59 | + CALL_HIP(hipMemcpy(d_A_rowptr, A.outer(), sizeArowptr, hipMemcpyHostToDevice)); |
| 60 | + CALL_HIP(hipMemcpy(d_A_colidx, A.inner(), sizeAcolidx, hipMemcpyHostToDevice)); |
| 61 | + CALL_HIP(hipMemcpy(d_A_values, A.data(), sizeAvalues, hipMemcpyHostToDevice)); |
| 62 | + CALL_HIP(hipMemcpy(d_x, x.data(), sizex, hipMemcpyHostToDevice)); |
| 63 | + |
| 64 | + hipsparseHandle_t handle; |
| 65 | + CALL_HIPSPARSE(hipsparseCreate(&handle)); |
| 66 | + |
| 67 | + hipsparseSpMatDescr_t matA; |
| 68 | + CALL_HIPSPARSE( hipsparseCreateCsr( |
| 69 | + &matA, |
| 70 | + A.rows(), A.cols(), A.nonZeros(), |
| 71 | + d_A_rowptr, |
| 72 | + d_A_colidx, |
| 73 | + d_A_values, |
| 74 | + HIPSPARSE_INDEX_32I, |
| 75 | + HIPSPARSE_INDEX_32I, |
| 76 | + HIPSPARSE_INDEX_BASE_ZERO, |
| 77 | + HIP_R_64F) ); |
| 78 | + |
| 79 | + hipsparseDnVecDescr_t vecX; |
| 80 | + CALL_HIPSPARSE( hipsparseCreateDnVec( |
| 81 | + &vecX, |
| 82 | + x.size(), |
| 83 | + d_x, |
| 84 | + HIP_R_64F) ); |
| 85 | + |
| 86 | + hipsparseDnVecDescr_t vecY; |
| 87 | + CALL_HIPSPARSE( hipsparseCreateDnVec( |
| 88 | + &vecY, |
| 89 | + y.size(), |
| 90 | + d_y, |
| 91 | + HIP_R_64F) ); |
| 92 | + |
| 93 | + const Scalar alpha = 1.0; |
| 94 | + const Scalar beta = 0.0; |
| 95 | + |
| 96 | + // Determine buffer size |
| 97 | + size_t bufferSize = 0; |
| 98 | + CALL_HIPSPARSE( hipsparseSpMV_bufferSize( |
| 99 | + handle, |
| 100 | + HIPSPARSE_OPERATION_NON_TRANSPOSE, |
| 101 | + &alpha, |
| 102 | + matA, |
| 103 | + vecX, |
| 104 | + &beta, |
| 105 | + vecY, |
| 106 | + HIP_R_64F, |
| 107 | + HIPSPARSE_SPMV_ALG_DEFAULT, |
| 108 | + &bufferSize) ); |
| 109 | + |
| 110 | + // Allocate buffer |
| 111 | + char* buffer; |
| 112 | + CALL_HIP( hipMalloc(&buffer, bufferSize) ); |
| 113 | + |
| 114 | + // Perform SpMV |
| 115 | + // y = alpha * A * x + beta * y |
| 116 | + CALL_HIPSPARSE( hipsparseSpMV( |
| 117 | + handle, |
| 118 | + HIPSPARSE_OPERATION_NON_TRANSPOSE, |
| 119 | + &alpha, |
| 120 | + matA, |
| 121 | + vecX, |
| 122 | + &beta, |
| 123 | + vecY, |
| 124 | + HIP_R_64F, |
| 125 | + HIPSPARSE_SPMV_ALG_DEFAULT, |
| 126 | + buffer) ); |
| 127 | + |
| 128 | + // Copy result back to host |
| 129 | + CALL_HIP(hipMemcpy(y.data(), d_y, sizey, hipMemcpyDeviceToHost)); |
| 130 | + |
| 131 | + CALL_HIPSPARSE( hipsparseDestroyDnVec(vecY) ); |
| 132 | + CALL_HIPSPARSE( hipsparseDestroyDnVec(vecX) ); |
| 133 | + CALL_HIPSPARSE( hipsparseDestroySpMat(matA) ); |
| 134 | + CALL_HIPSPARSE( hipsparseDestroy(handle) ); |
| 135 | + |
| 136 | + |
| 137 | + CALL_HIP(hipFree(d_A_rowptr)); |
| 138 | + CALL_HIP(hipFree(d_A_colidx)); |
| 139 | + CALL_HIP(hipFree(d_A_values)); |
| 140 | + CALL_HIP(hipFree(d_x)); |
| 141 | + CALL_HIP(hipFree(d_y)); |
| 142 | +} |
| 143 | + |
| 144 | + |
| 145 | +void LinearAlgebraHIP::spmm(const SparseMatrix& A, const Matrix& B, Matrix& C) const { |
| 146 | + ASSERT(A.cols() == B.rows() && A.rows() == C.rows() && B.cols() == C.cols()); |
| 147 | + // We expect indices to be 0-based |
| 148 | + ASSERT(A.outer()[0] == 0); |
| 149 | + const Size sizeArowptr = (A.rows() + 1) * sizeof(Index); |
| 150 | + const Size sizeAcolidx = A.nonZeros() * sizeof(Index); |
| 151 | + const Size sizeAvalues = A.nonZeros() * sizeof(Scalar); |
| 152 | + const Size sizeB = B.rows() * B.cols() * sizeof(Scalar); |
| 153 | + const Size sizeC = A.rows() * B.cols() * sizeof(Scalar); |
| 154 | + |
| 155 | + Index* d_A_rowptr; ///< device memory matrix A row pointers |
| 156 | + Index* d_A_colidx; ///< device memory matrix A col indices |
| 157 | + Scalar* d_A_values; ///< device memory matrix A values |
| 158 | + Scalar* d_B; ///< device memory matrix B |
| 159 | + Scalar* d_C; ///< device memory matrix C |
| 160 | + |
| 161 | + CALL_HIP(hipMalloc((void**)&d_A_rowptr, sizeArowptr)); |
| 162 | + CALL_HIP(hipMalloc((void**)&d_A_colidx, sizeAcolidx)); |
| 163 | + CALL_HIP(hipMalloc((void**)&d_A_values, sizeAvalues)); |
| 164 | + CALL_HIP(hipMalloc((void**)&d_B, sizeB)); |
| 165 | + CALL_HIP(hipMalloc((void**)&d_C, sizeC)); |
| 166 | + |
| 167 | + CALL_HIP(hipMemcpy(d_A_rowptr, A.outer(), sizeArowptr, hipMemcpyHostToDevice)); |
| 168 | + CALL_HIP(hipMemcpy(d_A_colidx, A.inner(), sizeAcolidx, hipMemcpyHostToDevice)); |
| 169 | + CALL_HIP(hipMemcpy(d_A_values, A.data(), sizeAvalues, hipMemcpyHostToDevice)); |
| 170 | + CALL_HIP(hipMemcpy(d_B, B.data(), sizeB, hipMemcpyHostToDevice)); |
| 171 | + |
| 172 | + hipsparseHandle_t handle; |
| 173 | + CALL_HIPSPARSE(hipsparseCreate(&handle)); |
| 174 | + |
| 175 | + hipsparseSpMatDescr_t matA; |
| 176 | + CALL_HIPSPARSE( hipsparseCreateCsr( |
| 177 | + &matA, |
| 178 | + A.rows(), A.cols(), A.nonZeros(), |
| 179 | + d_A_rowptr, |
| 180 | + d_A_colidx, |
| 181 | + d_A_values, |
| 182 | + HIPSPARSE_INDEX_32I, |
| 183 | + HIPSPARSE_INDEX_32I, |
| 184 | + HIPSPARSE_INDEX_BASE_ZERO, |
| 185 | + HIP_R_64F) ); |
| 186 | + |
| 187 | + // Create dense matrix descriptors |
| 188 | + hipsparseDnMatDescr_t matB; |
| 189 | + CALL_HIPSPARSE(hipsparseCreateDnMat( |
| 190 | + &matB, |
| 191 | + B.rows(), // rows |
| 192 | + B.cols(), // cols |
| 193 | + B.rows(), // leading dimension |
| 194 | + d_B, |
| 195 | + HIP_R_64F, |
| 196 | + HIPSPARSE_ORDER_COL) ); |
| 197 | + |
| 198 | + hipsparseDnMatDescr_t matC; |
| 199 | + CALL_HIPSPARSE(hipsparseCreateDnMat( |
| 200 | + &matC, |
| 201 | + C.rows(), // rows |
| 202 | + C.cols(), // cols |
| 203 | + C.rows(), // leading dimension |
| 204 | + d_C, |
| 205 | + HIP_R_64F, |
| 206 | + HIPSPARSE_ORDER_COL) ); |
| 207 | + |
| 208 | + const Scalar alpha = 1.0; |
| 209 | + const Scalar beta = 0.0; |
| 210 | + |
| 211 | + size_t bufferSize = 0; |
| 212 | + CALL_HIPSPARSE(hipsparseSpMM_bufferSize( |
| 213 | + handle, |
| 214 | + HIPSPARSE_OPERATION_NON_TRANSPOSE, |
| 215 | + HIPSPARSE_OPERATION_NON_TRANSPOSE, |
| 216 | + &alpha, |
| 217 | + matA, |
| 218 | + matB, |
| 219 | + &beta, |
| 220 | + matC, |
| 221 | + HIP_R_64F, |
| 222 | + HIPSPARSE_SPMM_ALG_DEFAULT, |
| 223 | + &bufferSize)); |
| 224 | + |
| 225 | + // Allocate buffer |
| 226 | + char* buffer; |
| 227 | + CALL_HIP(hipMalloc(&buffer, bufferSize)); |
| 228 | + |
| 229 | + // Perform SpMM |
| 230 | + CALL_HIPSPARSE(hipsparseSpMM( |
| 231 | + handle, |
| 232 | + HIPSPARSE_OPERATION_NON_TRANSPOSE, |
| 233 | + HIPSPARSE_OPERATION_NON_TRANSPOSE, |
| 234 | + &alpha, |
| 235 | + matA, |
| 236 | + matB, |
| 237 | + &beta, |
| 238 | + matC, |
| 239 | + HIP_R_64F, |
| 240 | + HIPSPARSE_SPMM_ALG_DEFAULT, |
| 241 | + buffer)); |
| 242 | + |
| 243 | + CALL_HIP(hipMemcpy(C.data(), d_C, sizeC, hipMemcpyDeviceToHost)); |
| 244 | + |
| 245 | + CALL_HIPSPARSE(hipsparseDestroy(handle)); |
| 246 | + CALL_HIPSPARSE(hipsparseDestroyDnMat(matC)); |
| 247 | + CALL_HIPSPARSE(hipsparseDestroyDnMat(matB)); |
| 248 | + CALL_HIPSPARSE(hipsparseDestroySpMat(matA)); |
| 249 | + |
| 250 | + CALL_HIP(hipFree(buffer)); |
| 251 | + CALL_HIP(hipFree(d_A_rowptr)); |
| 252 | + CALL_HIP(hipFree(d_A_colidx)); |
| 253 | + CALL_HIP(hipFree(d_A_values)); |
| 254 | + CALL_HIP(hipFree(d_B)); |
| 255 | + CALL_HIP(hipFree(d_C)); |
| 256 | +} |
| 257 | + |
| 258 | + |
| 259 | +void LinearAlgebraHIP::dsptd(const Vector& x, const SparseMatrix& A, const Vector& y, SparseMatrix& B) const { |
| 260 | + static const sparse::LinearAlgebraGeneric generic; |
| 261 | + generic.dsptd(x, A, y, B); |
| 262 | +} |
| 263 | + |
| 264 | + |
| 265 | +} // namespace sparse |
| 266 | +} // namespace linalg |
| 267 | +} // namespace eckit |
0 commit comments