-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamlit.py
295 lines (243 loc) · 10.6 KB
/
streamlit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import os
import folium
import polyline
import math
import pandas as pd
import joblib
import streamlit as st
import utils.map_utils as map_utils
from streamlit_folium import st_folium
from datetime import datetime, timedelta
ONEMAP_TOKEN = st.secrets["token"]
hdb = pd.read_csv("data/rental_with_engineered_features_cleaned.csv")
# std_dev = hdb['monthly_rent'].describe()["std"]
LAT_START = 1.3521
LONG_START = 103.8198
ZOOM_START = 10
RADIUS = 1000 # Set radius of the neighbours
if "center" not in st.session_state:
st.session_state["lat"] = LAT_START
st.session_state["long"] = LONG_START
st.session_state["center"] = [LAT_START, LONG_START]
if "zoom" not in st.session_state:
st.session_state["zoom"] = ZOOM_START
if "markers" not in st.session_state:
st.session_state["markers"] = []
FLAT_TYPE = ["1-ROOM", "2-ROOM", "3-ROOM", "4-ROOM", "5-ROOM", "EXECUTIVE"]
RENTAL_DATE = {"Immediate": 0, "3 Months": 3, "6 Months": 6}
def get_prediction_input(lat: float, long: float, flat_type: int, future_rental_date: int) -> dict:
distance_to_station, _, _, _ = map_utils.get_nearest_facility(lat, long, "stations")
distance_to_hawker, _, _, _ = map_utils.get_nearest_facility(lat, long,
"hawker_centres_markets")
distance_to_mall, _, _, _ = map_utils.get_nearest_facility(lat, long, "shopping_malls")
distance_to_cbd = map_utils.calculate_distance_to_cbd(lat, long)
# Get the current date
current_date = datetime.now()
# Add 'future_rental_date' months to the current date
future_date = current_date + timedelta(days=(future_rental_date * 30))
data_start_date = datetime.strptime('2021-01', '%Y-%m')
months_difference = (future_date.year - data_start_date.year) * 12 \
+ (future_date.month - data_start_date.month)
data = {
"rent_approval_date":[months_difference],
"flat_type":[flat_type],
"lat":[lat],
"lon":[long],
"min_geodisic_distance_to_station":[distance_to_station],
"min_geodisic_distance_to_hawker_market":[distance_to_hawker],
"min_geodisic_distance_to_shopping_mall":[distance_to_mall],
"geodesic_distance_to_cbd":[distance_to_cbd],
}
print(data)
input_df = pd.DataFrame(data)
return input_df
def address_updated():
"""
Callback function that streamlit calls when user enters an address
at the input field and currently only does the following:
1. zooms the map in
2. displays a marker at the rental location
3. centers map at the rental location
"""
st.session_state["markers"] = []
TOKEN = ONEMAP_TOKEN
address = st.session_state["address"]
flat_type = st.session_state["flat"]
(
latrental,
longrental,
postal,
address,
buildingname,
) = map_utils.get_address_details(address)
# dynamically update marker on map
# folium.Marker(location=(lat, long), popup=samplepopup).add_to(mapfolium)
# Add the circle of the radius
neighbour_radius = folium.Circle(
location=[latrental, longrental], radius=RADIUS, color="navy", fill=True
)
st.session_state["markers"].append(neighbour_radius)
# Add list of facilities
# Colours: 'white', 'orange', 'blue', 'lightred', 'darkpurple', 'darkred', 'purple',
# 'black', 'lightgray', 'beige', 'lightblue', 'pink', 'green', 'gray', 'cadetblue',
# 'darkgreen', 'red', 'darkblue', 'lightgreen'
facility_icon = {
"stations": {"icon": "subway", "colour": "darkblue"},
"shopping_malls": {"icon": "shopping-bag", "colour": "black"},
"hawker_centres_markets": {"icon": "cutlery", "colour": "orange"},
"schools": {"icon": "book", "colour": "purple"},
}
for facility in ["stations", "shopping_malls", "hawker_centres_markets", "schools"]:
# Add markers to the map for nearest train station
_, facloc, faclat, faclong = map_utils.get_nearest_facility(
latrental, longrental, facility
)
# print(facloc)
facicon = folium.Icon(
icon=facility_icon[facility]["icon"],
prefix="fa",
color=facility_icon[facility]["colour"],
)
facpopup = folium.Popup(f"{facloc}<br>", max_width=len(facloc) * 10)
facmarker = folium.Marker(
location=(faclat, faclong), icon=facicon, popup=facpopup
)
st.session_state["markers"].append(facmarker)
# Add polyline from house to nearest facility
# facsecs in the time to walk to facility, in seconds.
# Divide by 60 to get minutes.
facsecs, facdist, encoded_polyline = map_utils.getwalkingdetails(
str(latrental) + "," + str(longrental),
str(faclat) + "," + str(faclong),
TOKEN,
)
facpath = polyline.decode(encoded_polyline)
facpathpopup = folium.Popup(
f"{facloc}<br>Total Walking Distance: <b>{facdist}m</b><br> ETA: {math.ceil(facsecs)}mins",
max_width=len(facloc) * 10,
)
newline = folium.PolyLine(
facpath,
color=facility_icon[facility]["colour"],
weight=10,
opacity=0.8,
popup=facpathpopup,
)
st.session_state["markers"].append(newline)
# append rental house last, so it appears 'topmost' in case of overlaps
rentalpopup = folium.Popup(
f"{address} {buildingname}<br>"
f"SINGAPORE {postal}<br>"
f"Type: {flat_type}<br>",
max_width=len(f"{address}") * 12,
)
rentalicon = folium.Icon(icon="home", prefix="fa", color="blue")
rental_marker = folium.Marker(
location=[latrental, longrental], popup=rentalpopup, icon=rentalicon
)
st.session_state["markers"].append(rental_marker)
# dynamically center map on the added marker
st.session_state["center"] = [latrental, longrental]
st.session_state["lat"] = latrental
st.session_state["long"] = longrental
# dynamically zoom in map
st.session_state["zoom"] = 15
# print("update address:", st.session_state["lat"], st.session_state["long"], postal)
model = joblib.load("./model/finalized_model.pkl")
st.set_page_config(layout="wide")
st.title("HDB Rental Advisor")
col_left, col_right = st.columns([1, 2])
with col_left:
st.text_input(
"Enter your address or postal code", on_change=address_updated, key="address"
)
flat_option = st.selectbox(
"What is your flat type?", FLAT_TYPE, index=2, key="flat"
)
rental_date_option = st.selectbox(
"When does your new rental period start?",
RENTAL_DATE.keys(),
index=0,
key="rentaldate",
)
if st.button("Get advice"):
with st.spinner('Retrieving rental data...'):
flat_type = FLAT_TYPE.index(flat_option)
print(rental_date_option)
rental_approval_date = RENTAL_DATE[rental_date_option]
inference_input = get_prediction_input(st.session_state["lat"],
st.session_state["long"],
flat_type,
rental_approval_date)
print(rental_approval_date)
curr_pred_result = model.predict(inference_input)
# print(hdb.head(3))
neighbours = map_utils.find_neighbours(
(st.session_state["lat"], st.session_state["long"]),
flat_option, RADIUS, hdb
)
# print(neighbours.head(3))
for nblat, nblong, nbrental, nbloc, nbflat, nbdate in neighbours[
[
"lat",
"lon",
"monthly_rent",
"address",
"flat_type",
"rent_approval_date",
]
].values:
nbpopup = folium.Popup(
f"{nbloc}<br>"
f"Type: {nbflat}<br>"
f"Lease Start: {nbdate}<br>"
f"Monthly Rental: <b>{nbrental}</b>",
max_width=len(nbloc) * 10,
)
# print(nbpopup)
if nbrental > curr_pred_result:
nbicon = folium.Icon(icon="user", prefix="fa", color="red")
else:
nbicon = folium.Icon(icon="user", prefix="fa", color="green")
# , icon=nbicon
nbmarker = folium.Marker(
location=(nblat, nblong), popup=nbpopup, icon=nbicon
)
# Using insert to place the neighbourhood rentals before the
# input house, displays the markers in order
st.session_state["markers"].insert(0, nbmarker)
pred_rental_price = curr_pred_result[0]
# lb_rental_price = pred_rental_price - std_dev
# ub_rental_price = pred_rental_price + std_dev
flat_type_name_input = FLAT_TYPE[inference_input['flat_type'][0]]
flat_std_dev = hdb[hdb['flat_type']==flat_type_name_input]['monthly_rent'].describe()['std']
if rental_approval_date == 0:
# st.write(f"The property at your given location has a predicted rental of "
# f"\${lb_rental_price:.0f} - \${ub_rental_price:.0f} now")
st.write(f"The property at your given location has a predicted rental of "
f"\${pred_rental_price:.0f} +/- \${flat_std_dev:.0f} now")
else:
# st.write(f"The property at your given location has a predicted rental of "
# f"\${lb_rental_price:.0f} - \${ub_rental_price:.0f} in {rental_approval_date} months time")
st.write(f"The property at your given location has a predicted rental of "
f"\${pred_rental_price:.0f} +/- \${flat_std_dev:.0f} in {rental_approval_date} months time")
# Map column
with col_right:
sg_map = folium.Map(location=st.session_state["center"], zoom_start=ZOOM_START)
marker_group = folium.FeatureGroup(name="Markers")
for marker in st.session_state["markers"]:
marker_group.add_child(marker)
# call to render Folium map in Streamlit
st_folium(
sg_map,
center=st.session_state["center"],
zoom=st.session_state["zoom"],
feature_group_to_add=marker_group,
height=500,
width=800,
returned_objects=[],
)
st.info("Disclaimer: this app is meant as proof of concept only, \
and not for any actual real world prediction of property rentals")
st.info("Disclaimer: this app may not work as intended after July 7 2023, \
as the required OneMap token would have expired")