-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathausmpwPlusFluxScheme.C
346 lines (291 loc) · 10.8 KB
/
ausmpwPlusFluxScheme.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
/*---------------------------------------------------------------------------*\
HiSA: High Speed Aerodynamic solver
Copyright (C) 2014-2018 Oliver Oxtoby - CSIR, South Africa
Copyright (C) 2014-2018 Johan Heyns - CSIR, South Africa
Copyright (C) 1991-2008 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of HiSA.
HiSA is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
HiSA is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with HiSA. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "ausmpwPlusFluxScheme.H"
#include "addToRunTimeSelectionTable.H"
#include "bound.H"
#include "fvcSurfaceReconstruct.H"
#include "cellFaceFunctions.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
defineTypeNameAndDebug(ausmpwPlusFluxScheme, 0);
addToRunTimeSelectionTable(fluxScheme, ausmpwPlusFluxScheme, dictionary);
// * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * //
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
ausmpwPlusFluxScheme::ausmpwPlusFluxScheme
(
const dictionary& dict,
const psiThermo& thermo,
const volScalarField& rho,
const volVectorField& U,
const volVectorField& rhoU,
const volScalarField& rhoE
)
:
fluxScheme(typeName, dict),
mesh_(U.mesh()),
thermo_(thermo),
rho_(rho),
U_(U),
rhoU_(rhoU),
rhoE_(rhoE),
dict_(dict)
{}
// * * * * * * * * * * * * * * * * Destructors * * * * * * * * * * * * * * * //
ausmpwPlusFluxScheme::~ausmpwPlusFluxScheme()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
void Foam::ausmpwPlusFluxScheme::calcFlux(surfaceScalarField& phi, surfaceVectorField& phiUp, surfaceScalarField& phiEp, surfaceVectorField& Up)
{
const volScalarField& p = thermo_.p();
tmp<surfaceVectorField> U_L, U_R;
fvc::surfaceReconstruct(U_, U_L, U_R, "reconstruct(U)");
tmp<surfaceScalarField> phi_L = U_L()&mesh_.Sf();
tmp<surfaceScalarField> phi_R = U_R()&mesh_.Sf();
U_L->rename("U_L");
U_R->rename("U_R");
tmp<surfaceVectorField> U_L_rel(U_L.ref());
tmp<surfaceVectorField> U_R_rel(U_R.ref());
/*
// Flux relative to mesh movement
if (mesh_.moving())
{
fvc::makeRelative(phi_L.ref(), U_);
fvc::makeRelative(phi_R.ref(), U_);
}
*/
surfaceScalarField un_L = phi_L/mesh_.magSf();
surfaceScalarField un_R = phi_R/mesh_.magSf();
tmp< volScalarField > gamma = thermo_.gamma();
tmp< volScalarField > H
(
(max(rhoE_/rho_,dimensionedScalar("0", rhoE_.dimensions()/rho_.dimensions(), SMALL)) +
max(p/rho_,dimensionedScalar("0", p.dimensions()/rho_.dimensions(), SMALL)))
);
H->rename("H");
tmp< volScalarField > Hrel(H.ref());
tmp<surfaceScalarField> H_L, H_R;
fvc::surfaceReconstruct(Hrel, H_L, H_R, "reconstruct(T)");
/*
if (mesh_.moving())
{
Hrel = H() - 0.5*(U_&U_);
volVectorField Urel(U_);
Urel -= fvc::reconstruct(fvc::meshPhi(U_));
Hrel.ref() += 0.5*(Urel&Urel);
}
*/
tmp< volScalarField > c = sqrt(2.0*(gamma()-1.0)/(gamma()+1.0)*Hrel());
c->rename("c");
gamma.clear();
tmp<surfaceScalarField> c_L, c_R;
fvc::surfaceReconstruct(c, c_L, c_R, "reconstruct(T)");
c_L = sqr(c_L())/max(c_L(), un_L);
c_R = sqr(c_R())/max(c_R(),-un_R);
tmp< surfaceScalarField > c_face(min(c_L(),c_R()));
c_L.clear();
c_R.clear();
// Critical Mach number
tmp< surfaceScalarField > Mach_L(un_L/c_face());
// Split Mach numbers
tmp<surfaceScalarField> Mach_plus_L =
calcForEachFace
(
[](const scalar& MLf)
{
if (mag(MLf) < 1.0)
{
//scalar ML2p = 0.25*sqr(MLf+1);
//scalar ML2m = -0.25*sqr(MLf-1);
//return ML2p; // beta = 0
//return ML2p*(1 - 2*ML2m); // beta = 1/8
return 0.25*sqr(MLf+1);
}
else
{
return max(MLf, 0);
}
},
Mach_L()
);
// Pressure flux
tmp<surfaceScalarField> p_plus_L =
calcForEachFace
(
[](const scalar& MLf)
{
if (mag(MLf) < 1.0)
{
//scalar ML2p = 0.25*sqr(MLf+1);
//scalar ML2m = -0.25*sqr(MLf-1);
//return ML2p*(2 - MLf - 3*MLf*ML2m); //alpha = 3/16
return 0.25*sqr(MLf+1)*(2-MLf);
}
else
{
return (MLf > 0 ? 1.0 : 0.0);
}
},
Mach_L()
);
tmp< surfaceScalarField > Mach_R(un_R/c_face());
// Split Mach numbers
tmp<surfaceScalarField> Mach_minus_R =
calcForEachFace
(
[](const scalar& MRf)
{
if (mag(MRf) < 1.0)
{
//scalar MR2m = -0.25*sqr(MRf-1);
//scalar MR2p = 0.25*sqr(MRf+1);
//return MR2m; // beta = 0
//return MR2m*(1 + 2*MR2p); // beta = 1/8
return -0.25*sqr(MRf-1);
}
else
{
return min(MRf, 0);
}
},
Mach_R()
);
// Pressure flux
tmp<surfaceScalarField> p_minus_R =
calcForEachFace
(
[](const scalar& MRf)
{
if (mag(MRf) < 1.0)
{
//scalar MR2m = -0.25*sqr(MRf-1);
//scalar MR2p = 0.25*sqr(MRf+1);
//return MR2m*(-2 - MRf + 3*MRf*MR2p); //alpha = 3/16
return 0.25*sqr(MRf-1)*(2+MRf);
}
else
{
return (MRf < 0 ? 1.0 : 0.0);
}
},
Mach_R()
);
tmp<surfaceScalarField> p_L, p_R;
fvc::surfaceReconstruct(p, p_L, p_R, "reconstruct(rho)");
tmp<surfaceScalarField> omega = 1-pow(min(p_L()/p_R(), p_R()/p_L()), 3);
tmp<surfaceScalarField> rho_L, rho_R;
fvc::surfaceReconstruct(rho_, rho_L, rho_R, "reconstruct(rho)");
tmp< surfaceScalarField > Mach_1_2 = Mach_plus_L() + Mach_minus_R();
surfaceScalarField p_1_2 = p_plus_L()*p_L() + p_minus_R()*p_R();
tmp<surfaceScalarField> p_L_F(p_L()/p_1_2);
tmp<surfaceScalarField> f_L =
calcForEachFace
(
[](const scalar& MLf, const scalar& PLf)
{
if (mag(MLf) < 1.0)
{
//scalar ML2p = 0.25*sqr(MLf+1);
//scalar ML2m = -0.25*sqr(MLf-1);
//return ML2p; // beta = 0
return PLf-1; // beta = 1/8
}
else
{
return 0.0;
}
},
Mach_L(),
p_L_F()
);//
p_L_F.clear();
Mach_L.clear();
tmp< surfaceScalarField > p_R_F(p_R()/p_1_2);
tmp<surfaceScalarField> f_R =
calcForEachFace
(
[](const scalar& MRf, const scalar& PRf)
{
if (mag(MRf) < 1.0)
{
return PRf-1; // beta = 1/8
}
else
{
return 0.0;
}
},
Mach_R(),
p_R_F()
);//
p_R_F.clear();
Mach_R.clear();
#if OPENFOAM >= 1712
Mach_1_2->setOriented(true);
#endif
tmp<surfaceScalarField> Mach_plus_L_B1 = Mach_plus_L()+Mach_minus_R()*((1-omega())*(1+f_R())-f_L());
tmp<surfaceScalarField> Mach_plus_L_B2 = Mach_plus_L()*omega()*(1+f_L());
tmp<surfaceScalarField> Mach_minus_R_B1 = Mach_minus_R()*omega()*(1+f_R());
tmp<surfaceScalarField> Mach_minus_R_B2 = Mach_minus_R()+Mach_plus_L()*((1-omega())*(1+f_L())-f_R());
p_L.clear();
p_R.clear();
p_plus_L.clear();
p_minus_R.clear();
f_L.clear();
f_R.clear();
Mach_plus_L.clear();
Mach_minus_R.clear();
tmp<surfaceVectorField> U_f = surfaceFieldSelect(U_L_rel, U_R_rel, Mach_1_2(), 0);
tmp<surfaceScalarField> Mach_plus_L_B = surfaceFieldSelect(Mach_plus_L_B1, Mach_plus_L_B2, Mach_1_2(), 0);
tmp<surfaceScalarField> Mach_minus_R_B = surfaceFieldSelect(Mach_minus_R_B1, Mach_minus_R_B2, Mach_1_2(), 0);
surfaceScalarField L = Mach_plus_L_B()*rho_L()*c_face();
surfaceScalarField R = Mach_minus_R_B()*rho_R()*c_face();
//surfaceScalarField rhoa_LR = Mach_1_2()*c_face()*surfaceFieldSelect(rho_L, rho_R, Mach_1_2(), 0);
surfaceScalarField rhoa_LR = (L + R);
//surfaceVectorField rhoaU_LR = rhoa_LR*U_f();
surfaceVectorField rhoaU_LR = (L*U_L() + R*U_R());
// volScalarField ee("ee",rhoE_/rho_-0.5*magSqr(U_));
// surfaceScalarField rhoah_LR = rhoa_LR*(fvc::surfaceReconstruct(ee, Mach_1_2(), "reconstruct(T)") + 0.5*magSqr(U_f())) + p_1_2*Mach_1_2()*c_face();
// NOTE: According to Liou, enthalpy should be interpolated.
//surfaceScalarField rhoah_LR = rhoa_LR*(fvc::surfaceReconstruct(H(), Mach_1_2(), "reconstruct(T)"));
surfaceScalarField rhoah_LR = (L*H_L() + R*H_R());
// Face velocity for sigmaDotU (turbulence term)
Up = U_f()*mesh_.magSf();
U_f.clear();
H.clear();
Mach_plus_L_B.clear();
Mach_minus_R_B.clear();
// c_face.clear();
phi = rhoa_LR*mesh_.magSf();
rhoaU_LR.setOriented(true);
phiUp = rhoaU_LR*mesh_.magSf() + p_1_2*mesh_.Sf();
phiEp = rhoah_LR*mesh_.magSf();
if (mesh_.moving())
{
phiEp += p_1_2 * fvc::meshPhi(U_);
//phiEp += fvc::meshPhi(U_)*fvc::surfaceReconstruct(p, Mach_1_2(), "reconstruct(T)");
// Ensure consistent interpolation with pressure term above
//phiEp += fvc::meshPhi(U_)*fvc::surfaceReconstruct(rho_, Mach_1_2(), "reconstruct(rho)")*fvc::surfaceReconstruct((p/rho_)(), Mach_1_2(), "reconstruct(T)");
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// ************************************************************************* //