-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRR_algorithm_simula.py
173 lines (154 loc) · 6.67 KB
/
RR_algorithm_simula.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#Author: Stephen A. Adubi
#Date: 02-04-2018 (DD-MM-YYYY) @ 12:03 am (start time)
#Finalised on 07-04-2018 (DD-MM-YYYY) @ 11:25 pm
#Simulation of RR scheduling algorithm
#This is an event-driven simulation, read more on this topic from the book at the end of the lecture note!
from random import *
#simulation parameters
global N #number of processes to simulate
global delta #time quantum of x units
global QList #queue of processes: although implemented using list
global arrTimes
global count
global TimeSeries, arrivals, turnTime, finishTime, burstTimes, waitingTime
low = 65
high = 131
delta = 20
QList = []
arrivals = {}
turnTime = {}
finishTime = {}
burstTimes = {}
waitingTime = {}
N = 20
arrTimes = [0]
TimeSeries = []
max_IAT = 15 #maximum inter-arrival time
def generate_arrival_event(clock):
global arrTimes, count
#print('arrTimes before now: ', arrTimes)
#print('Number of processes that already arrived: ', count)
handle_arrival(clock) #generate the next arrival
if(arrTimes):
del arrTimes[0] #remove the current arrival time after handling
if(count < N): #generate next arrival if max. number of packets NOT reached!
nextArrv = clock + randrange(1, max_IAT + 1)
print('Next arrival: ', nextArrv)
arrTimes.append(nextArrv) #record the time for the next arrival
print('queued arrival times: ', arrTimes)
def dequeue_process():
global QList
lst = QList[0]
del QList[0] #remove the item in front of the 'queue'
print('Process',lst[0],'deleted')
def dequeue_and_enqueue_process(ID, burstTime):
global QList
lst = QList[0]
del QList[0] #removes the process in front of the queue
LIST = [ID, burstTime]
QList.append(LIST) #enqueue the process again until its turn is reached
print('Process',lst[0],'deleted and put back again')
def handle_arrival(clock):
global QList, count, arrivals, turnTime, finishTime, burstTimes, waitingTime
global TimeSeries, tProcess, lstEntry
burstTime = randrange(low, high)
if(not bool(arrivals)):
arrivals = {count: clock} #dictionary of process' arrival times
else:
arrivals[count] = clock #append
if(not bool(finishTime)):
finishTime = {count: 0} #create a dictionary of finishTime
else:
finishTime[count] = 0 #append to the dictionary
if(not bool(turnTime)):
turnTime = {count: 0} #create a dictionary of turnaround time's'
else:
turnTime[count] = 0 #append to the dictionary
if(not bool(burstTimes)):
burstTimes = {count: burstTime} #create a dictionary of burstTime's'
else:
burstTimes[count] = burstTime #append to the dictionary
#debugging
#print('gets here, value of count = ', count)
tProcess = [count, burstTime] #list containing process ID
#print('Process profile: ', tProcess) #debugging
lstEntry = [clock] #record the time of entry of process i in a list
TimeSeries.append(lstEntry) #append the new list entry of process i
#print('TimeSeries: ', TimeSeries) #debugging
QList.append(tProcess) #add the new process with its profile
count = count + 1
def main():
global clock, count, QList, arrTimes, burstTimes, turnTime
global arrivals, finishTime, N
count = 0
clock = 0
generate_arrival_event(clock) #generate the next(first) arrival
print('queue: ', QList)
while(QList):
counter = 0
processDone = 0 #to detect if a process was completed within delta
lst = QList[0] #get the list on top of the queue
PID = lst[0] #get the next process ID
#drop the current clock value into the timeseries list of lists
lstEntry = TimeSeries[PID] #get the list of the current process
lstEntry.append(clock) #append the current value of clock to the list
TimeSeries[PID] = lstEntry #put the updated list back in TimeSeries list
#print('TimeSeries:',TimeSeries)
#if time quantum of current process elapses, preempt it (the process)
while(counter < delta):
#print('counter = ', counter) #debug
clock = clock + 1
#print('arrival times = ', arrTimes)
if(arrTimes): #check if the list is NOT empty
if(clock==arrTimes[0]): generate_arrival_event(clock)
#print('CLOCK:',clock) #uncomment this to see the clock progression
lst[1] = lst[1] - 1 #reduce the process' burst time
if(lst[1] == 0):
finishTime[PID] = clock
turnTime[PID] = clock - arrivals[PID] #turnaround time
#drop the current clock value into the timeseries list of lists
lstEntry = TimeSeries[PID] #get the list of the current process
lstEntry.append(clock) #append the current value of clock
TimeSeries[PID] = lstEntry #put the updated list back
processDone = 1
break
counter = counter + 1 #until counter 'meets' the time quantum
if(processDone):
dequeue_process() #remove the process from the queue
else:
#drop the current clock value into the timeseries list of lists
lstEntry = TimeSeries[PID] #get the list of the current process
lstEntry.append(clock) #append the current value of clock to d list
TimeSeries[PID] = lstEntry #put the updated list back
dequeue_and_enqueue_process(PID, lst[1]) #re-schedule the process
#checking, debugging
print('Arrival Time\'s\'',arrivals)
#print('Finish Time\'s\'',finishTime)
print('Turnaround Time\'s\'',turnTime)
total = 0
total2 = 0
print('Burst times',burstTimes)
for val in turnTime.values():
total = total + val
for val in burstTimes.values():
total2 = total2 + val
#calculating waiting time for each process and average waiting time; awt
total_waiting_time = 0
for i in range(N):
lst = TimeSeries[i] #retrieve the time series of process i
j = 1
summ = 0
listLength = len(lst)
while(j < listLength):
summ = summ + (lst[j] - lst[j-1])
j = j + 2
total_waiting_time = total_waiting_time + summ
print('Total Waiting time for Process',i,'=',summ)
#end while
#end for
print('Average Waiting Time=',total_waiting_time/N)
print('Total turnaround time:',total,' Number of processes =', N)
print('Average Turnaround time =',total/N)
print('CLOCK at the end:',clock,' Total burst times:',total2)
if __name__ == '__main__':
main()