-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
640 lines (509 loc) · 18.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
from setup_environment import db_dict, get_dbengine
from src.baselines.run_baseline_jaro import BaselineJaro
from src.baselines.run_baseline_nearest_text import BaselineNearestText
from src.baselines.run_baseline_description_overlap import BaselineDescOverlap
from src.model_visualizer import ModelVisualizer
from src.label_creator import LabelGenerator
from src.matrix_generator import MatrixGenerator
from src.time_splitter import TimeSplitter
from src.retrain_splitter import RetrainSplitter
from src.cohort_builder import CohortBuilder
from src.train_model import ModelTrainer
from src.evaluation.model_ranker import ModelRanker
from src.evaluation.model_scorer import ModelScorer
from src.evaluation.model_predictor import ModelPredictor
from src.evaluation.model_evaluator import ModelEvaluator
from src.feature_importance import FeatureImportanceSklearn
from src.infrastructure.process_official_codes import ProcessOfficialCodes
from src.infrastructure.process_admissions import ProcessAdmissions
from src.infrastructure.process_transactions import ProcessTransactions
from src.infrastructure.process_xlsx import ProcessXlsx
from src.infrastructure.process_csv import ProcessCsv
from src.infrastructure.process_codes import ProcessCodes
from config.model_settings import (
BaselineConfig,
CohortBuilderConfig,
ProcessAdmissionsConfig,
ProcessCodesConfig,
ProcessCsvConfig,
ProcessTransactionsConfig,
ProcessXlsxConfig,
TimeSplitterConfig,
RetrainSplitterConfig,
MatrixGeneratorConfig,
ModelTrainerConfig,
ModelEvaluatorConfig,
FeatureImportanceConfig,
ModelScorerConfig,
ModelRankerConfig,
RetrainingConfig,
LabelGeneratorConfig,
ModelVisualizerConfig,
ProcessOfficialCodesConfig,
)
import click
import gc
import datetime as dt
import logging
from dotenv import load_dotenv
load_dotenv()
class ProcessXlsxFlow:
def __init__(self, xlsx_directory, csvs_directory):
self.xlsx_directory = xlsx_directory
self.csvs_directory = csvs_directory
self.config = ProcessXlsxConfig()
def execute(self):
xlsx_processor = ProcessXlsx.from_dataclass_config(
self.config,
)
xlsx_processor.execute(self.xlsx_directory, self.csvs_directory)
class ProcessCsvFlow:
def __init__(self, raw_csvs_directory, processed_csvs_directory):
self.raw_csvs_directory = raw_csvs_directory
self.processed_csvs_directory = processed_csvs_directory
self.config = ProcessCsvConfig()
def execute(self):
csv_processor = ProcessCsv.from_dataclass_config(
self.config,
)
csv_processor.execute(self.raw_csvs_directory, self.processed_csvs_directory)
class ProcessOfficialCodesFlow:
def __init__(self, raw_csvs_directory, processed_csvs_directory):
self.raw_csvs_directory = raw_csvs_directory
self.processed_csvs_directory = processed_csvs_directory
self.config = ProcessOfficialCodesConfig()
def execute(self):
csv_processor = ProcessOfficialCodes.from_dataclass_config(
self.config,
)
csv_processor.execute(self.raw_csvs_directory, self.processed_csvs_directory)
class ProcessCodesFlow:
def __init__(self):
self.config = ProcessCodesConfig()
def execute(self):
engine = get_dbengine(**db_dict)
codes_processor = ProcessCodes.from_dataclass_config(
self.config,
)
codes_processor.execute(engine)
class ProcessTransactionsFlow:
def __init__(self):
self.config = ProcessTransactionsConfig()
def execute(self):
engine = get_dbengine(**db_dict)
transactions_processor = ProcessTransactions.from_dataclass_config(
self.config,
)
transactions_processor.execute(engine)
class ProcessAdmissionsFlow:
def __init__(self):
self.config = ProcessAdmissionsConfig()
def execute(self):
engine = get_dbengine(**db_dict)
admissions_processor = ProcessAdmissions.from_dataclass_config(
self.config,
)
admissions_processor.execute(engine)
class BaselinesFlow:
def __init__(self):
self.config = BaselineConfig()
def execute(self, distance_metric):
for metric in list(distance_metric):
logging.info(f"Generating baseline for {metric} distance")
if metric == "jaro":
return BaselineJaro(metric)
if metric == "nearest_text":
return BaselineNearestText(metric)
if metric == "desc_overlap":
return BaselineDescOverlap(metric)
class TimeSplitterFlow:
def __init__(self):
self.config = TimeSplitterConfig()
def execute(
self,
):
return TimeSplitter.from_dataclass_config(
self.config,
)
class RetrainSplitterFlow:
def __init__(self):
self.config = RetrainSplitterConfig()
def execute(
self,
):
return RetrainSplitter.from_dataclass_config(
self.config,
)
class CohortBuilderFlow:
def __init__(self):
self.config = CohortBuilderConfig()
def execute(self):
return CohortBuilder.from_dataclass_config(
self.config,
)
class BuildFeaturesFlow:
def __init__(self):
self.config = MatrixGeneratorConfig()
def execute(self, text_features_path, features_path, labels_path):
return MatrixGenerator.from_dataclass_config(
self.config,
text_features_path,
features_path,
labels_path,
)
class LabelGeneratorFlow:
def __init__(self):
self.config = LabelGeneratorConfig()
def execute(self, labels_path):
return LabelGenerator.from_dataclass_config(self.config, labels_path)
class FeatureImportanceFlow:
def __init__(self):
self.config = FeatureImportanceConfig()
def execute(
self,
model_name,
X_valid,
models_directory,
model_id,
start_datetime,
schema_type,
):
feat_importance_sklearn = FeatureImportanceSklearn.from_dataclass_config(
self.config,
)
return feat_importance_sklearn.execute(
model_name,
X_valid,
models_directory,
model_id,
start_datetime,
schema_type,
)
class ModelTrainerFlow:
def __init__(self):
self.config = ModelTrainerConfig()
def execute(self):
return ModelTrainer.from_dataclass_config(self.config)
class ModelScorerFlow:
def __init__(self):
self.config = ModelScorerConfig()
def execute(self, labels_directory, features_directory):
return ModelScorer.from_dataclass_config(
self.config, labels_directory, features_directory
)
class ModelRankerFlow:
def __init__(self):
self.config = ModelRankerConfig()
def execute(self):
return ModelRanker.from_dataclass_config(
self.config,
)
class ModelPredictorFlow:
def __init__(self):
self.config = RetrainingConfig()
def execute(self):
return ModelPredictor.from_dataclass_config(
self.config,
)
class ModelEvaluatorFlow:
def __init__(self):
self.config = ModelEvaluatorConfig()
def execute(self):
return ModelEvaluator.from_dataclass_config(
self.config,
)
class ModelVisualizerFlow:
def __init__(self, plots_directory):
self.config = ModelVisualizerConfig()
self.eval_config = ModelEvaluatorConfig()
self.plots_directory = plots_directory
def execute(self, run_date, schema_type):
model_visualizer = ModelVisualizer.from_dataclass_config(
self.config, self.eval_config
)
model_visualizer.execute(
schema_type, path=self.plots_directory, run_date=run_date
)
@click.command("process-xlsx", help="Process xlsx")
@click.argument("xlsx_directory")
@click.argument("csvs_directory")
def process_xlsx(xlsx_directory, csvs_directory):
ProcessXlsxFlow(xlsx_directory, csvs_directory).execute()
@click.command("process-csv", help="Process csv")
@click.argument("raw_csvs_directory")
@click.argument("processed_csvs_directory")
def process_csv(raw_csvs_directory, processed_csvs_directory):
ProcessCsvFlow(raw_csvs_directory, processed_csvs_directory).execute()
@click.command("process-official-codes", help="Process official codes textfiles")
@click.argument("raw_text_directory")
@click.argument("raw_csvs_directory")
def process_official_codes(raw_text_directory, raw_csvs_directory):
ProcessOfficialCodesFlow(raw_text_directory, raw_csvs_directory).execute()
@click.command("process-codes", help="Generate processed codes table")
def process_codes():
ProcessCodesFlow().execute()
@click.command("process-transactions", help="Generate processed transactions table")
def process_transactions():
ProcessTransactionsFlow().execute()
@click.command("process-admissions", help="Generate processed admissions table")
def process_admissions():
ProcessAdmissionsFlow().execute()
@click.command("run-baselines", help="Generate baseline models")
@click.option(
"--distance_metric",
"-",
type=click.Choice(["jaro", "desc_overlap", "nearest_text"]),
multiple=True,
)
def run_baselines(distance_metric):
engine = get_dbengine(**db_dict)
baseline = BaselinesFlow().execute(distance_metric)
baseline.execute(engine)
@click.command("time-splitter", help="Generate time splitting table")
@click.argument("schema_type")
def time_splitter(schema_type):
time_splitter = TimeSplitterFlow().execute()
time_splitter.execute(schema_type)
@click.command("retrain-splitter", help="Generate retraining splits")
@click.argument("schema_type")
def retrain_splitter(schema_type):
retrain_splitter = RetrainSplitterFlow().execute()
retrain_splitter.execute(schema_type)
@click.command("cohort-builder", help="Generate cohorts for time splits")
@click.argument("schema_type")
def cohort_builder(schema_type):
engine = get_dbengine(**db_dict)
time_splitter = TimeSplitterFlow().execute()
train_validation_list = time_splitter.execute(schema_type)
cohort_builder = CohortBuilderFlow().execute()
cohort_builder.execute(train_validation_list, schema_type, engine)
@click.command("label-generator", help="Generate labels")
@click.argument("schema_type")
@click.argument("labels_directory", envvar="LABELPATH")
def label_generator(schema_type, labels_directory):
label_generator = LabelGeneratorFlow().execute(labels_directory)
start_datetime = dt.datetime.now()
label_generator.execute(start_datetime, schema_type)
@click.command("model-visualizer", help="Visualize results of model")
@click.argument("plots_directory", envvar="PLOTPATH")
def model_visualizer(plots_directory):
ModelVisualizerFlow(plots_directory).execute()
@click.command("build-features", help="Generate features")
@click.argument("schema_type")
@click.argument("text_features_directory", envvar="TEXTFEATUREPATH")
@click.argument("features_directory", envvar="FEATUREPATH")
@click.argument("labels_directory", envvar="LABELPATH")
def build_features(
schema_type, text_features_directory, features_directory, labels_directory
):
matrix_generator = BuildFeaturesFlow().execute(
text_features_directory, features_directory, labels_directory
)
matrix_generator.execute_train_valid_set(schema_type)
@click.command("train-model", help="Train one model")
def train_model():
(
train_model,
valid_df,
valid_y,
model_id,
model_name,
mlb,
) = ModelTrainerFlow().execute()
ModelEvaluatorFlow().execute(
train_model, valid_df, valid_y, model_id, model_name, mlb
)
@click.command("run-pipeline", help="Run full pipeline")
@click.option(
"--schema_type",
"-",
type=click.Choice(["dev", "prod"]),
multiple=False,
)
@click.argument("plots_directory", envvar="PLOTPATH")
@click.argument("models_directory", envvar="MODELPATH")
@click.argument("text_features_directory", envvar="TEXTFEATUREPATH")
@click.argument("features_directory", envvar="FEATUREPATH")
@click.argument("labels_directory", envvar="LABELPATH")
def run_pipeline(
schema_type,
plots_directory,
models_directory,
text_features_directory,
features_directory,
labels_directory,
):
start_datetime = dt.datetime.now()
logging.info(f"Starting pipeline at {start_datetime}")
engine = get_dbengine(**db_dict)
time_splitter = TimeSplitterFlow().execute()
train_validation_list = time_splitter.execute(schema_type, engine)
cohort_builder = CohortBuilderFlow().execute()
cohort_builder.execute(train_validation_list, schema_type, engine)
label_generator = LabelGeneratorFlow().execute(labels_directory)
label_generator.execute(start_datetime, schema_type)
# this is the matrix generator
build_features = BuildFeaturesFlow().execute(
text_features_directory, features_directory, labels_directory
)
train_validation_set = build_features.execute_train_valid_set(schema_type)
# loop for time splits
model_output = []
for i in train_validation_set:
start_model_datetime = dt.datetime.now()
(
validation_csr,
full_features_csr,
valid_labels,
train_labels,
) = build_features.execute(i, start_datetime, schema_type)
logging.info(f"Starting pipeline for model {i} {start_model_datetime}")
model_trainer = ModelTrainerFlow().execute()
model_output += model_trainer.train_all_models(
i,
full_features_csr,
train_labels.drop(
["unique_id", "cohort", "cohort_type", "train_validation_set"], axis=1
),
models_directory,
start_datetime,
schema_type,
)
del full_features_csr # noqa F821
del validation_csr # noqa F821
del train_labels # noqa F821
del valid_labels # noqa F821
gc.collect()
logging.info("Getting model output")
for model_id, model_name, i in model_output:
logging.info(f"Training and evaluating model {model_id}")
feature_importance = FeatureImportanceFlow()
feature_importance.execute(
model_name,
models_directory,
model_id,
start_datetime,
i,
schema_type,
)
model_scorer = ModelScorerFlow().execute(labels_directory, features_directory)
valid_labels = model_scorer.execute(
model_id,
model_name,
start_datetime,
models_directory,
schema_type,
i,
)
model_ranker = ModelRankerFlow().execute()
model_ranker.execute(model_id, start_datetime, schema_type)
model_evaluator = ModelEvaluatorFlow().execute()
model_evaluator.execute(
schema_type,
model_name=model_name,
model_id=model_id,
valid_y=valid_labels.drop(
["cohort", "cohort_type", "train_validation_set"], axis=1
),
run_date=start_datetime,
)
ModelVisualizerFlow(plots_directory).execute(start_datetime, schema_type)
end_datetime = dt.datetime.now()
logging.info(f"Ending pipeline at {end_datetime}")
logging.info(f"Total time ellapsed: {end_datetime - start_datetime}")
@click.command("run-retraining", help="Retrain pipeline")
@click.option(
"--schema_type",
"-",
type=click.Choice(["dev", "prod"]),
multiple=False,
)
@click.argument("models_directory", envvar="MODELPATH")
@click.argument("text_features_directory", envvar="TEXTFEATUREPATH")
@click.argument("features_directory", envvar="FEATUREPATH")
@click.argument("labels_directory", envvar="LABELPATH")
@click.argument("output_directory", envvar="OUTPUTPATH")
def run_retraining(
schema_type,
models_directory,
text_features_directory,
features_directory,
labels_directory,
output_directory,
):
start_datetime = dt.datetime.now()
logging.info(f"Starting retraining at {start_datetime}")
engine = get_dbengine(**db_dict)
retrain_splitter = RetrainSplitterFlow().execute()
train_validation_list, retrain_table_name = retrain_splitter.execute(
schema_type, engine
)
cohort_builder = CohortBuilderFlow().execute()
cohort_builder.execute(
train_validation_list, schema_type, engine, retrain_table_name
)
label_generator = LabelGeneratorFlow().execute(labels_directory)
label_generator.execute(start_datetime, schema_type, retrain_table_name)
# this is the matrix generator
build_features = BuildFeaturesFlow().execute(
text_features_directory, features_directory, labels_directory
)
train_validation_set = build_features.execute_train_valid_set(schema_type)
# loop for time splits
for i in train_validation_set:
(
validation_csr,
full_features_csr,
valid_labels,
train_labels,
) = build_features.execute(i, start_datetime, schema_type, retrain_table_name)
model_trainer = ModelTrainerFlow().execute()
model_id, model_name, train_valid_split = model_trainer.train_best_model(
i,
full_features_csr,
train_labels.drop(
["unique_id", "cohort", "cohort_type", "train_validation_set"], axis=1
),
models_directory,
start_datetime,
schema_type,
)
model_scorer = ModelScorerFlow().execute(labels_directory, features_directory)
model_scorer.execute(
model_id,
model_name,
start_datetime,
models_directory,
schema_type,
train_valid_split,
)
model_ranker = ModelRankerFlow().execute()
model_ranker.execute(model_id, start_datetime, schema_type)
model_predictor = ModelPredictorFlow().execute()
model_predictor.execute(model_id, start_datetime, schema_type, output_directory)
end_datetime = dt.datetime.now()
logging.info(f"Ending pipeline at {end_datetime}")
logging.info(f"Total time ellapsed: {end_datetime - start_datetime}")
@click.group("pakistan-ihhn", help="Library for the pakistan-ihhn DSSG project")
@click.pass_context
def cli(ctx):
...
cli.add_command(process_xlsx)
cli.add_command(process_csv)
cli.add_command(process_official_codes)
cli.add_command(process_codes)
cli.add_command(process_transactions)
cli.add_command(process_admissions)
cli.add_command(train_model)
cli.add_command(time_splitter)
cli.add_command(retrain_splitter)
cli.add_command(cohort_builder)
cli.add_command(build_features)
cli.add_command(train_model)
cli.add_command(run_pipeline)
cli.add_command(run_retraining)
cli.add_command(model_visualizer)
cli.add_command(label_generator)
cli.add_command(run_baselines)
if __name__ == "__main__":
cli()