forked from TheAlgorithms/Rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquadratic_residue.rs
148 lines (134 loc) · 4.22 KB
/
quadratic_residue.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/// Cipolla algorithm
///
/// Solving quadratic residue problem:
/// x^2 = a (mod p) , p is an odd prime
/// with O(M*log(n)) time complexity, M depends on the complexity of complex numbers multiplication.
///
/// Wikipedia reference: https://en.wikipedia.org/wiki/Cipolla%27s_algorithm
/// When a is the primitive root modulo n, the answer is unique.
/// Otherwise it will return the smallest positive solution
use std::rc::Rc;
use std::time::{SystemTime, UNIX_EPOCH};
use super::{fast_power, PCG32};
#[derive(Debug)]
struct CustomFiniteFiled {
modulus: u64,
i_square: u64,
}
impl CustomFiniteFiled {
pub fn new(modulus: u64, i_square: u64) -> Self {
Self { modulus, i_square }
}
}
#[derive(Clone, Debug)]
struct CustomComplexNumber {
real: u64,
imag: u64,
f: Rc<CustomFiniteFiled>,
}
impl CustomComplexNumber {
pub fn new(real: u64, imag: u64, f: Rc<CustomFiniteFiled>) -> Self {
Self { real, imag, f }
}
pub fn mult_other(&mut self, rhs: &Self) {
let tmp = (self.imag * rhs.real + self.real * rhs.imag) % self.f.modulus;
self.real = (self.real * rhs.real
+ ((self.imag * rhs.imag) % self.f.modulus) * self.f.i_square)
% self.f.modulus;
self.imag = tmp;
}
pub fn mult_self(&mut self) {
let tmp = (self.imag * self.real + self.real * self.imag) % self.f.modulus;
self.real = (self.real * self.real
+ ((self.imag * self.imag) % self.f.modulus) * self.f.i_square)
% self.f.modulus;
self.imag = tmp;
}
pub fn fast_power(mut base: Self, mut power: u64) -> Self {
let mut result = CustomComplexNumber::new(1, 0, base.f.clone());
while power != 0 {
if (power & 1) != 0 {
result.mult_other(&base); // result *= base;
}
base.mult_self(); // base *= base;
power >>= 1;
}
result
}
}
fn is_residue(x: u64, modulus: u64) -> bool {
let power = (modulus - 1) >> 1;
x != 0 && fast_power(x as usize, power as usize, modulus as usize) == 1
}
// return two solutions (x1, x2) for Quadratic Residue problem x^2 = a (mod p), where p is an odd prime
// if a is Quadratic Nonresidues, return None
pub fn cipolla(a: u32, p: u32, seed: Option<u64>) -> Option<(u32, u32)> {
// The params should be kept in u32 range for multiplication overflow issue
// But inside we use u64 for convenience
let a = a as u64;
let p = p as u64;
if a == 0 {
return Some((0, 0));
}
if !is_residue(a, p) {
return None;
}
let seed = match seed {
Some(seed) => seed,
None => SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap()
.as_secs(),
};
let mut rng = PCG32::new_default(seed);
let r = loop {
let r = rng.get_u64() % p;
if r == 0 || !is_residue((p + r * r - a) % p, p) {
break r;
}
};
let filed = Rc::new(CustomFiniteFiled::new(p, (p + r * r - a) % p));
let comp = CustomComplexNumber::new(r, 1, filed);
let power = (p + 1) >> 1;
let x0 = CustomComplexNumber::fast_power(comp, power).real as u32;
let x1 = p as u32 - x0;
if x0 < x1 {
Some((x0, x1))
} else {
Some((x1, x0))
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn small_numbers() {
assert_eq!(cipolla(1, 43, None), Some((1, 42)));
assert_eq!(cipolla(2, 23, None), Some((5, 18)));
assert_eq!(cipolla(17, 83, Some(42)), Some((10, 73)));
}
#[test]
fn random_numbers() {
assert_eq!(cipolla(392203, 852167, None), Some((413252, 438915)));
assert_eq!(
cipolla(379606557, 425172197, None),
Some((143417827, 281754370))
);
assert_eq!(
cipolla(585251669, 892950901, None),
Some((192354555, 700596346))
);
assert_eq!(
cipolla(404690348, 430183399, Some(19260817)),
Some((57227138, 372956261))
);
assert_eq!(
cipolla(210205747, 625380647, Some(998244353)),
Some((76810367, 548570280))
);
}
#[test]
fn no_answer() {
assert_eq!(cipolla(650927, 852167, None), None);
}
}