forked from TheAlgorithms/Rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstrongly_connected_components.rs
164 lines (145 loc) · 4.88 KB
/
strongly_connected_components.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
/*
Tarjan's algorithm to find Strongly Connected Components (SCCs):
It runs in O(n + m) (so it is optimal) and as a by-product, it returns the
components in some (reverse) topologically sorted order.
We assume that graph is represented using (compressed) adjacency matrix
and its vertices are numbered from 1 to n. If this is not the case, one
can use `src/graph/graph_enumeration.rs` to convert their graph.
*/
pub struct StronglyConnectedComponents {
// The number of the SCC the vertex is in, starting from 1
pub component: Vec<usize>,
// The discover time of the vertex with minimum discover time reachable
// from this vertex. The MSB of the numbers are used to save whether the
// vertex has been visited (but the MSBs are cleared after
// the algorithm is done)
pub state: Vec<u64>,
// The total number of SCCs
pub num_components: usize,
// The stack of vertices that DFS has seen (used internally)
stack: Vec<usize>,
// Used internally during DFS to know the current discover time
current_time: usize,
}
// Some functions to help with DRY and code readability
const NOT_DONE: u64 = 1 << 63;
#[inline]
fn set_done(vertex_state: &mut u64) {
*vertex_state ^= NOT_DONE;
}
#[inline]
fn is_in_stack(vertex_state: u64) -> bool {
vertex_state != 0 && (vertex_state & NOT_DONE) != 0
}
#[inline]
fn is_unvisited(vertex_state: u64) -> bool {
vertex_state == NOT_DONE
}
#[inline]
fn get_discover_time(vertex_state: u64) -> u64 {
vertex_state ^ NOT_DONE
}
impl StronglyConnectedComponents {
pub fn new(mut num_vertices: usize) -> Self {
num_vertices += 1; // Vertices are numbered from 1, not 0
StronglyConnectedComponents {
component: vec![0; num_vertices],
state: vec![NOT_DONE; num_vertices],
num_components: 0,
stack: vec![],
current_time: 1,
}
}
fn dfs(&mut self, v: usize, adj: &[Vec<usize>]) -> u64 {
let mut min_disc = self.current_time as u64;
// self.state[v] = NOT_DONE + min_disc
self.state[v] ^= min_disc;
self.current_time += 1;
self.stack.push(v);
for &u in adj[v].iter() {
if is_unvisited(self.state[u]) {
min_disc = std::cmp::min(self.dfs(u, adj), min_disc);
} else if is_in_stack(self.state[u]) {
min_disc = std::cmp::min(get_discover_time(self.state[u]), min_disc);
}
}
// No vertex with a lower discovery time is reachable from this one
// So it should be "the head" of a new SCC.
if min_disc == get_discover_time(self.state[v]) {
self.num_components += 1;
loop {
let u = self.stack.pop().unwrap();
self.component[u] = self.num_components;
set_done(&mut self.state[u]);
if u == v {
break;
}
}
}
min_disc
}
pub fn find_components(&mut self, adj: &[Vec<usize>]) {
self.state[0] = 0;
for v in 1..adj.len() {
if is_unvisited(self.state[v]) {
self.dfs(v, adj);
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn acyclic() {
let mut sccs = StronglyConnectedComponents::new(5);
let adj = vec![vec![], vec![2, 4], vec![3, 4], vec![5], vec![5], vec![]];
sccs.find_components(&adj);
assert_eq!(sccs.component, vec![0, 5, 4, 2, 3, 1]);
assert_eq!(sccs.state, vec![0, 1, 2, 3, 5, 4]);
assert_eq!(sccs.num_components, 5);
}
#[test]
fn cycle() {
let mut sccs = StronglyConnectedComponents::new(4);
let adj = vec![vec![], vec![2], vec![3], vec![4], vec![1]];
sccs.find_components(&adj);
assert_eq!(sccs.component, vec![0, 1, 1, 1, 1]);
assert_eq!(sccs.state, vec![0, 1, 2, 3, 4]);
assert_eq!(sccs.num_components, 1);
}
#[test]
fn dumbbell() {
let mut sccs = StronglyConnectedComponents::new(6);
let adj = vec![
vec![],
vec![2],
vec![3, 4],
vec![1],
vec![5],
vec![6],
vec![4],
];
sccs.find_components(&adj);
assert_eq!(sccs.component, vec![0, 2, 2, 2, 1, 1, 1]);
assert_eq!(sccs.state, vec![0, 1, 2, 3, 4, 5, 6]);
assert_eq!(sccs.num_components, 2);
}
#[test]
fn connected_dumbbell() {
let mut sccs = StronglyConnectedComponents::new(6);
let adj = vec![
vec![],
vec![2],
vec![3, 4],
vec![1],
vec![5, 1],
vec![6],
vec![4],
];
sccs.find_components(&adj);
assert_eq!(sccs.component, vec![0, 1, 1, 1, 1, 1, 1]);
assert_eq!(sccs.state, vec![0, 1, 2, 3, 4, 5, 6]);
assert_eq!(sccs.num_components, 1);
}
}