forked from TheAlgorithms/Rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathheavy_light_decomposition.rs
191 lines (176 loc) · 6.12 KB
/
heavy_light_decomposition.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
/*
Heavy Light Decomposition:
It partitions a tree into disjoint paths such that:
1. Each path is a part of some leaf's path to root
2. The number of paths from any vertex to the root is of O(lg(n))
Such a decomposition can be used to answer many types of queries about vertices
or edges on a particular path. It is often used with some sort of binary tree
to handle different operations on the paths, for example segment tree or
fenwick tree.
Many members of this struct are made public, because they can either be
supplied by the developer, or can be useful for other parts of the code.
The implementation assumes that the tree vertices are numbered from 1 to n
and it is represented using (compressed) adjacency matrix. If this is not true,
maybe `graph_enumeration.rs` can help.
*/
type Adj = [Vec<usize>];
pub struct HeavyLightDecomposition {
// Each vertex is assigned a number from 1 to n. For `v` and `u` such that
// u is parent of v, and both are in path `p`, it is true that:
// position[u] = position[v] - 1
pub position: Vec<usize>,
// The first (closest to root) vertex of the path containing each vertex
pub head: Vec<usize>,
// The "heaviest" child of each vertex, its subtree is at least as big as
// the other ones. If `v` is a leaf, big_child[v] = 0
pub big_child: Vec<usize>,
// Used internally to fill `position` Vec
current_position: usize,
}
impl HeavyLightDecomposition {
pub fn new(mut num_vertices: usize) -> Self {
num_vertices += 1;
HeavyLightDecomposition {
position: vec![0; num_vertices],
head: vec![0; num_vertices],
big_child: vec![0; num_vertices],
current_position: 1,
}
}
fn dfs(&mut self, v: usize, parent: usize, adj: &Adj) -> usize {
let mut big_child = 0usize;
let mut bc_size = 0usize; // big child size
let mut subtree_size = 1usize; // size of this subtree
for &u in adj[v].iter() {
if u == parent {
continue;
}
let u_size = self.dfs(u, v, adj);
subtree_size += u_size;
if u_size > bc_size {
big_child = u;
bc_size = u_size;
}
}
self.big_child[v] = big_child;
subtree_size
}
pub fn decompose(&mut self, root: usize, adj: &Adj) {
self.current_position = 1;
self.dfs(root, 0, adj);
self.decompose_path(root, 0, root, adj);
}
fn decompose_path(&mut self, v: usize, parent: usize, head: usize, adj: &Adj) {
self.head[v] = head;
self.position[v] = self.current_position;
self.current_position += 1;
let bc = self.big_child[v];
if bc != 0 {
// Continue this path
self.decompose_path(bc, v, head, adj);
}
for &u in adj[v].iter() {
if u == parent || u == bc {
continue;
}
// Start a new path
self.decompose_path(u, v, u, adj);
}
}
}
#[cfg(test)]
mod tests {
use super::*;
struct LinearCongruenceGenerator {
// modulus as 2 ^ 32
multiplier: u32,
increment: u32,
state: u32,
}
impl LinearCongruenceGenerator {
fn new(multiplier: u32, increment: u32, state: u32) -> Self {
Self {
multiplier,
increment,
state,
}
}
fn next(&mut self) -> u32 {
self.state =
(self.multiplier as u64 * self.state as u64 + self.increment as u64) as u32;
self.state
}
}
fn get_num_paths(
hld: &HeavyLightDecomposition,
mut v: usize,
parent: &[usize],
) -> (usize, usize) {
// Return height and number of paths
let mut ans = 0usize;
let mut height = 0usize;
let mut prev_head = 0usize;
loop {
height += 1;
let head = hld.head[v];
if head != prev_head {
ans += 1;
prev_head = head;
}
v = parent[v];
if v == 0 {
break;
}
}
(ans, height)
}
#[test]
fn single_path() {
let mut adj = vec![vec![], vec![2], vec![3], vec![4], vec![5], vec![6], vec![]];
let mut hld = HeavyLightDecomposition::new(6);
hld.decompose(1, &adj);
assert_eq!(hld.head, vec![0, 1, 1, 1, 1, 1, 1]);
assert_eq!(hld.position, vec![0, 1, 2, 3, 4, 5, 6]);
assert_eq!(hld.big_child, vec![0, 2, 3, 4, 5, 6, 0]);
adj[3].push(2);
adj[2].push(1);
hld.decompose(3, &adj);
assert_eq!(hld.head, vec![0, 2, 2, 3, 3, 3, 3]);
assert_eq!(hld.position, vec![0, 6, 5, 1, 2, 3, 4]);
assert_eq!(hld.big_child, vec![0, 0, 1, 4, 5, 6, 0]);
}
#[test]
fn random_tree() {
// Let it have 1e4 vertices. It should finish under 100ms even with
// 1e5 vertices
let n = 1e4 as usize;
let threshold = 14; // 2 ^ 14 = 16384 > n
let mut adj: Vec<Vec<usize>> = vec![vec![]; n + 1];
let mut parent: Vec<usize> = vec![0; n + 1];
let mut hld = HeavyLightDecomposition::new(n);
let mut lcg = LinearCongruenceGenerator::new(1103515245, 12345, 314);
parent[2] = 1;
adj[1].push(2);
for i in 3..=n {
// randomly determine the parent of each vertex.
// There will be modulus bias, but it isn't important
let par_max = i - 1;
let par_min = (10 * par_max + 1) / 11;
// Bring par_min closer to par_max to increase expected tree height
let par = (lcg.next() as usize % (par_max - par_min + 1)) + par_min;
adj[par].push(i);
parent[i] = par;
}
// let's get a few leaves
let leaves: Vec<usize> = (1..=n)
.rev()
.filter(|&v| adj[v].is_empty())
.take(100)
.collect();
hld.decompose(1, &adj);
for l in leaves {
let (p, _h) = get_num_paths(&hld, l, &parent);
assert!(p <= threshold);
}
}
}