forked from TheAlgorithms/Rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvex_hull.rs
174 lines (157 loc) · 4.82 KB
/
convex_hull.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
use std::cmp::Ordering::Equal;
fn sort_by_min_angle(pts: &[(f64, f64)], min: &(f64, f64)) -> Vec<(f64, f64)> {
let mut points: Vec<(f64, f64, (f64, f64))> = pts
.iter()
.map(|x| {
(
(x.1 - min.1).atan2(x.0 - min.0),
// angle
(x.1 - min.1).hypot(x.0 - min.0),
// distance (we want the closest to be first)
*x,
)
})
.collect();
points.sort_by(|a, b| a.partial_cmp(b).unwrap_or(Equal));
points.into_iter().map(|x| x.2).collect()
}
// calculates the z coordinate of the vector product of vectors ab and ac
fn calc_z_coord_vector_product(a: &(f64, f64), b: &(f64, f64), c: &(f64, f64)) -> f64 {
(b.0 - a.0) * (c.1 - a.1) - (c.0 - a.0) * (b.1 - a.1)
}
/*
If three points are aligned and are part of the convex hull then the three are kept.
If one doesn't want to keep those points, it is easy to iterate the answer and remove them.
The first point is the one with the lowest y-coordinate and the lowest x-coordinate.
Points are then given counter-clockwise, and the closest one is given first if needed.
*/
pub fn convex_hull_graham(pts: &[(f64, f64)]) -> Vec<(f64, f64)> {
if pts.is_empty() {
return vec![];
}
let mut stack: Vec<(f64, f64)> = vec![];
let min = pts
.iter()
.min_by(|a, b| {
let ord = a.1.partial_cmp(&b.1).unwrap_or(Equal);
match ord {
Equal => a.0.partial_cmp(&b.0).unwrap_or(Equal),
o => o,
}
})
.unwrap();
let points = sort_by_min_angle(pts, min);
if points.len() <= 3 {
return points;
}
for point in points {
while stack.len() > 1
&& calc_z_coord_vector_product(&stack[stack.len() - 2], &stack[stack.len() - 1], &point)
< 0.
{
stack.pop();
}
stack.push(point);
}
stack
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn empty() {
assert_eq!(convex_hull_graham(&vec![]), vec![]);
}
#[test]
fn not_enough_points() {
let list = vec![(0f64, 0f64)];
assert_eq!(convex_hull_graham(&list), list);
}
#[test]
fn not_enough_points1() {
let list = vec![(2f64, 2f64), (1f64, 1f64), (0f64, 0f64)];
let ans = vec![(0f64, 0f64), (1f64, 1f64), (2f64, 2f64)];
assert_eq!(convex_hull_graham(&list), ans);
}
#[test]
fn not_enough_points2() {
let list = vec![(2f64, 2f64), (1f64, 2f64), (0f64, 0f64)];
let ans = vec![(0f64, 0f64), (2f64, 2f64), (1f64, 2f64)];
assert_eq!(convex_hull_graham(&list), ans);
}
#[test]
// from https://codegolf.stackexchange.com/questions/11035/find-the-convex-hull-of-a-set-of-2d-points
fn lots_of_points() {
let list = vec![
(4.4, 14.),
(6.7, 15.25),
(6.9, 12.8),
(2.1, 11.1),
(9.5, 14.9),
(13.2, 11.9),
(10.3, 12.3),
(6.8, 9.5),
(3.3, 7.7),
(0.6, 5.1),
(5.3, 2.4),
(8.45, 4.7),
(11.5, 9.6),
(13.8, 7.3),
(12.9, 3.1),
(11., 1.1),
];
let ans = vec![
(11., 1.1),
(12.9, 3.1),
(13.8, 7.3),
(13.2, 11.9),
(9.5, 14.9),
(6.7, 15.25),
(4.4, 14.),
(2.1, 11.1),
(0.6, 5.1),
(5.3, 2.4),
];
assert_eq!(convex_hull_graham(&list), ans);
}
#[test]
// from https://codegolf.stackexchange.com/questions/11035/find-the-convex-hull-of-a-set-of-2d-points
fn lots_of_points2() {
let list = vec![
(1., 0.),
(1., 1.),
(1., -1.),
(0.68957, 0.283647),
(0.909487, 0.644276),
(0.0361877, 0.803816),
(0.583004, 0.91555),
(-0.748169, 0.210483),
(-0.553528, -0.967036),
(0.316709, -0.153861),
(-0.79267, 0.585945),
(-0.700164, -0.750994),
(0.452273, -0.604434),
(-0.79134, -0.249902),
(-0.594918, -0.397574),
(-0.547371, -0.434041),
(0.958132, -0.499614),
(0.039941, 0.0990732),
(-0.891471, -0.464943),
(0.513187, -0.457062),
(-0.930053, 0.60341),
(0.656995, 0.854205),
];
let ans = vec![
(1., -1.),
(1., 0.),
(1., 1.),
(0.583004, 0.91555),
(0.0361877, 0.803816),
(-0.930053, 0.60341),
(-0.891471, -0.464943),
(-0.700164, -0.750994),
(-0.553528, -0.967036),
];
assert_eq!(convex_hull_graham(&list), ans);
}
}