forked from TheAlgorithms/Rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathall_combination_of_size_k.rs
62 lines (51 loc) · 1.46 KB
/
all_combination_of_size_k.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
/*
In this problem, we want to determine all possible combinations of k
numbers out of 1 ... n. We use backtracking to solve this problem.
Time complexity: O(C(n,k)) which is O(n choose k) = O((n!/(k! * (n - k)!)))
generate_all_combinations(n=4, k=2) => [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]
*/
pub fn generate_all_combinations(n: i32, k: i32) -> Vec<Vec<i32>> {
let mut result = vec![];
create_all_state(1, n, k, &mut vec![], &mut result);
result
}
fn create_all_state(
increment: i32,
total_number: i32,
level: i32,
current_list: &mut Vec<i32>,
total_list: &mut Vec<Vec<i32>>,
) {
if level == 0 {
total_list.push(current_list.clone());
return;
}
for i in increment..(total_number - level + 2) {
current_list.push(i);
create_all_state(i + 1, total_number, level - 1, current_list, total_list);
current_list.pop();
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_output() {
let expected_res = vec![
vec![1, 2],
vec![1, 3],
vec![1, 4],
vec![2, 3],
vec![2, 4],
vec![3, 4],
];
let res = generate_all_combinations(4, 2);
assert_eq!(expected_res, res);
}
#[test]
fn test_empty() {
let expected_res: Vec<Vec<i32>> = vec![vec![]];
let res = generate_all_combinations(0, 0);
assert_eq!(expected_res, res);
}
}