comments | difficulty | edit_url | tags | ||||
---|---|---|---|---|---|---|---|
true |
中等 |
|
给定一个 2 维数组 intervals
,其中 intervals[i] = [starti, endi]
表示区间 i
的开头和结尾。另外还给定一个整数 k
。
你必须向数组 恰好添加一个 新的区间 [startnew, endnew]
使得:
- 新区间的长度,
endnew - startnew
最多为k
。 - 在添加之后,
intervals
中 连通组 的数量 最少。
区间的 连通组 是一起覆盖了从最小点到最大点的连续范围,中间没有间隙的区间的最大集合。下面是一些例子:
- 区间组
[[1, 2], [2, 5], [3, 3]]
是连通的,因为它们一起覆盖了 1 到 5 的范围,中间没有任何间隔。 - 然而,区间组
[[1, 2], [3, 4]]
不是连通的,因为(2, 3)
段没有被覆盖。
返回在数组 恰好添加一个 新区间后,连通组的 最小 数量。
示例 1:
输入:intervals = [[1,3],[5,6],[8,10]], k = 3
输出:2
解释:
在添加区间 [3, 5]
后,我们有两个连通组:[[1, 3], [3, 5], [5, 6]]
和 [[8, 10]]
。
示例 2:
输入:intervals = [[5,10],[1,1],[3,3]], k = 1
输出:3
解释:
在添加区间 [1, 1]
后,我们有三个连通组:[[1, 1], [1, 1]]
,[[3, 3]]
,和 [[5, 10]]
。
提示:
1 <= intervals.length <= 105
intervals[i] == [starti, endi]
1 <= starti <= endi <= 109
1 <= k <= 109
首先,我们对给定的区间集合
那么我们可以将初始答案设为
接下来,我们枚举
最终,我们返回答案
时间复杂度
class Solution:
def minConnectedGroups(self, intervals: List[List[int]], k: int) -> int:
intervals.sort()
merged = [intervals[0]]
for s, e in intervals[1:]:
if merged[-1][1] < s:
merged.append([s, e])
else:
merged[-1][1] = max(merged[-1][1], e)
ans = len(merged)
for i, (_, e) in enumerate(merged):
j = bisect_left(merged, [e + k + 1, 0])
ans = min(ans, len(merged) - (j - i - 1))
return ans
class Solution {
public int minConnectedGroups(int[][] intervals, int k) {
Arrays.sort(intervals, (a, b) -> Integer.compare(a[0], b[0]));
List<int[]> merged = new ArrayList<>();
merged.add(intervals[0]);
for (int i = 1; i < intervals.length; i++) {
int[] interval = intervals[i];
int[] last = merged.get(merged.size() - 1);
if (last[1] < interval[0]) {
merged.add(interval);
} else {
last[1] = Math.max(last[1], interval[1]);
}
}
int ans = merged.size();
for (int i = 0; i < merged.size(); i++) {
int[] interval = merged.get(i);
int j = binarySearch(merged, interval[1] + k + 1);
ans = Math.min(ans, merged.size() - (j - i - 1));
}
return ans;
}
private int binarySearch(List<int[]> nums, int x) {
int l = 0, r = nums.size();
while (l < r) {
int mid = (l + r) >> 1;
if (nums.get(mid)[0] >= x) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
}
class Solution {
public:
int minConnectedGroups(vector<vector<int>>& intervals, int k) {
sort(intervals.begin(), intervals.end());
vector<vector<int>> merged;
for (const auto& interval : intervals) {
int s = interval[0], e = interval[1];
if (merged.empty() || merged.back()[1] < s) {
merged.emplace_back(interval);
} else {
merged.back()[1] = max(merged.back()[1], e);
}
}
int ans = merged.size();
for (int i = 0; i < merged.size(); ++i) {
auto& interval = merged[i];
int j = lower_bound(merged.begin(), merged.end(), vector<int>{interval[1] + k + 1, 0}) - merged.begin();
ans = min(ans, (int) merged.size() - (j - i - 1));
}
return ans;
}
};
func minConnectedGroups(intervals [][]int, k int) int {
sort.Slice(intervals, func(i, j int) bool { return intervals[i][0] < intervals[j][0] })
merged := [][]int{}
for _, interval := range intervals {
s, e := interval[0], interval[1]
if len(merged) == 0 || merged[len(merged)-1][1] < s {
merged = append(merged, interval)
} else {
merged[len(merged)-1][1] = max(merged[len(merged)-1][1], e)
}
}
ans := len(merged)
for i, interval := range merged {
j := sort.Search(len(merged), func(j int) bool { return merged[j][0] >= interval[1]+k+1 })
ans = min(ans, len(merged)-(j-i-1))
}
return ans
}
function minConnectedGroups(intervals: number[][], k: number): number {
intervals.sort((a, b) => a[0] - b[0]);
const merged: number[][] = [];
for (const interval of intervals) {
const [s, e] = interval;
if (merged.length === 0 || merged.at(-1)![1] < s) {
merged.push(interval);
} else {
merged.at(-1)![1] = Math.max(merged.at(-1)![1], e);
}
}
const search = (x: number): number => {
let [l, r] = [0, merged.length];
while (l < r) {
const mid = (l + r) >> 1;
if (merged[mid][0] >= x) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
};
let ans = merged.length;
for (let i = 0; i < merged.length; ++i) {
const j = search(merged[i][1] + k + 1);
ans = Math.min(ans, merged.length - (j - i - 1));
}
return ans;
}