Skip to content

Latest commit

 

History

History
157 lines (119 loc) · 3.86 KB

File metadata and controls

157 lines (119 loc) · 3.86 KB
comments difficulty edit_url tags
true
中等
数据库

English Version

题目描述

表:transactions

+------------------+------+
| Column Name      | Type | 
+------------------+------+
| transaction_id   | int  |
| amount           | int  |
| transaction_date | date |
+------------------+------+
transactions_id 列唯一标识了表中的每一行。
这张表的每一行包含交易 id,金额总和和交易日期。

编写一个解决方案来查找每天 奇数 交易金额和 偶数 交易金额的 总和。如果某天没有奇数或偶数交易,显示为 0

返回结果表以 transaction_date 升序 排序。

结果格式如下所示。

 

示例:

输入:

transactions 表:

+----------------+--------+------------------+
| transaction_id | amount | transaction_date |
+----------------+--------+------------------+
| 1              | 150    | 2024-07-01       |
| 2              | 200    | 2024-07-01       |
| 3              | 75     | 2024-07-01       |
| 4              | 300    | 2024-07-02       |
| 5              | 50     | 2024-07-02       |
| 6              | 120    | 2024-07-03       |
+----------------+--------+------------------+
  

输出:

+------------------+---------+----------+
| transaction_date | odd_sum | even_sum |
+------------------+---------+----------+
| 2024-07-01       | 75      | 350      |
| 2024-07-02       | 0       | 350      |
| 2024-07-03       | 0       | 120      |
+------------------+---------+----------+
  

解释:

  • 对于交易日期:
    • 2024-07-01:
      • 奇数交易金额总和:75
      • 偶数交易金额总和:150 + 200 = 350
    • 2024-07-02:
      • 奇数交易金额总和:0
      • 偶数交易金额总和:300 + 50 = 350
    • 2024-07-03:
      • 奇数交易金额总和:0
      • 偶数交易金额总和:120

注意:输出表以 transaction_date 升序排序。

解法

方法一:分组求和

我们可以将数据按照 transaction_date 进行分组,然后分别计算奇数和偶数的交易金额之和。最后按照 transaction_date 升序排序。

MySQL

# Write your MySQL query statement below
SELECT
    transaction_date,
    SUM(IF(amount % 2 = 1, amount, 0)) AS odd_sum,
    SUM(IF(amount % 2 = 0, amount, 0)) AS even_sum
FROM transactions
GROUP BY 1
ORDER BY 1;

Pandas

import pandas as pd


def sum_daily_odd_even(transactions: pd.DataFrame) -> pd.DataFrame:
    transactions["odd_sum"] = transactions["amount"].where(
        transactions["amount"] % 2 == 1, 0
    )
    transactions["even_sum"] = transactions["amount"].where(
        transactions["amount"] % 2 == 0, 0
    )

    result = (
        transactions.groupby("transaction_date")
        .agg(odd_sum=("odd_sum", "sum"), even_sum=("even_sum", "sum"))
        .reset_index()
    )

    result = result.sort_values("transaction_date")

    return result