comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
中等 |
1819 |
第 397 场周赛 Q3 |
|
给你一个由 正整数 组成、大小为 m x n
的矩阵 grid
。你可以从矩阵中的任一单元格移动到另一个位于正下方或正右侧的任意单元格(不必相邻)。从值为 c1
的单元格移动到值为 c2
的单元格的得分为 c2 - c1
。
你可以从 任一 单元格开始,并且必须至少移动一次。
返回你能得到的 最大 总得分。
示例 1:
输入:grid = [[9,5,7,3],[8,9,6,1],[6,7,14,3],[2,5,3,1]]
输出:9
解释:从单元格 (0, 1)
开始,并执行以下移动:
- 从单元格 (0, 1)
移动到 (2, 1)
,得分为 7 - 5 = 2
。
- 从单元格 (2, 1)
移动到 (2, 2)
,得分为 14 - 7 = 7
。
总得分为 2 + 7 = 9
。
示例 2:
输入:grid = [[4,3,2],[3,2,1]]
输出:-1
解释:从单元格 (0, 0)
开始,执行一次移动:从 (0, 0)
到 (0, 1)
。得分为 3 - 4 = -1
。
提示:
m == grid.length
n == grid[i].length
2 <= m, n <= 1000
4 <= m * n <= 105
1 <= grid[i][j] <= 105
根据题目描述,如果我们经过的单元格的值依次是
我们可以使用动态规划来解决这个问题。我们定义
那么答案为
时间复杂度
class Solution:
def maxScore(self, grid: List[List[int]]) -> int:
f = [[0] * len(grid[0]) for _ in range(len(grid))]
ans = -inf
for i, row in enumerate(grid):
for j, x in enumerate(row):
mi = inf
if i:
mi = min(mi, f[i - 1][j])
if j:
mi = min(mi, f[i][j - 1])
ans = max(ans, x - mi)
f[i][j] = min(x, mi)
return ans
class Solution {
public int maxScore(List<List<Integer>> grid) {
int m = grid.size(), n = grid.get(0).size();
final int inf = 1 << 30;
int ans = -inf;
int[][] f = new int[m][n];
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
int mi = inf;
if (i > 0) {
mi = Math.min(mi, f[i - 1][j]);
}
if (j > 0) {
mi = Math.min(mi, f[i][j - 1]);
}
ans = Math.max(ans, grid.get(i).get(j) - mi);
f[i][j] = Math.min(grid.get(i).get(j), mi);
}
}
return ans;
}
}
class Solution {
public:
int maxScore(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
const int inf = 1 << 30;
int ans = -inf;
int f[m][n];
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
int mi = inf;
if (i) {
mi = min(mi, f[i - 1][j]);
}
if (j) {
mi = min(mi, f[i][j - 1]);
}
ans = max(ans, grid[i][j] - mi);
f[i][j] = min(grid[i][j], mi);
}
}
return ans;
}
};
func maxScore(grid [][]int) int {
m, n := len(grid), len(grid[0])
f := make([][]int, m)
for i := range f {
f[i] = make([]int, n)
}
const inf int = 1 << 30
ans := -inf
for i, row := range grid {
for j, x := range row {
mi := inf
if i > 0 {
mi = min(mi, f[i-1][j])
}
if j > 0 {
mi = min(mi, f[i][j-1])
}
ans = max(ans, x-mi)
f[i][j] = min(x, mi)
}
}
return ans
}
function maxScore(grid: number[][]): number {
const [m, n] = [grid.length, grid[0].length];
const f: number[][] = Array.from({ length: m }, () => Array.from({ length: n }, () => 0));
let ans = -Infinity;
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
let mi = Infinity;
if (i) {
mi = Math.min(mi, f[i - 1][j]);
}
if (j) {
mi = Math.min(mi, f[i][j - 1]);
}
ans = Math.max(ans, grid[i][j] - mi);
f[i][j] = Math.min(mi, grid[i][j]);
}
}
return ans;
}