comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
中等 |
1784 |
第 374 场周赛 Q2 |
|
给你一个下标从 0 开始的整数数组 coins
,表示可用的硬币的面值,以及一个整数 target
。
如果存在某个 coins
的子序列总和为 x
,那么整数 x
就是一个 可取得的金额 。
返回需要添加到数组中的 任意面值 硬币的 最小数量 ,使范围 [1, target]
内的每个整数都属于 可取得的金额 。
数组的 子序列 是通过删除原始数组的一些(可能不删除)元素而形成的新的 非空 数组,删除过程不会改变剩余元素的相对位置。
示例 1:
输入:coins = [1,4,10], target = 19 输出:2 解释:需要添加面值为 2 和 8 的硬币各一枚,得到硬币数组 [1,2,4,8,10] 。 可以证明从 1 到 19 的所有整数都可由数组中的硬币组合得到,且需要添加到数组中的硬币数目最小为 2 。
示例 2:
输入:coins = [1,4,10,5,7,19], target = 19 输出:1 解释:只需要添加一枚面值为 2 的硬币,得到硬币数组 [1,2,4,5,7,10,19] 。 可以证明从 1 到 19 的所有整数都可由数组中的硬币组合得到,且需要添加到数组中的硬币数目最小为 1 。
示例 3:
输入:coins = [1,1,1], target = 20 输出:3 解释: 需要添加面值为 4 、8 和 16 的硬币各一枚,得到硬币数组 [1,1,1,4,8,16] 。 可以证明从 1 到 20 的所有整数都可由数组中的硬币组合得到,且需要添加到数组中的硬币数目最小为 3 。
提示:
1 <= target <= 105
1 <= coins.length <= 105
1 <= coins[i] <= target
我们不妨假设当前需要构造的金额为
接下来,分类讨论:
- 如果
$x \le s$ ,那么我们可以将上面两个区间合并,得到$[0, s+x-1]$ 内的所有金额。 - 如果
$x \gt s$ ,那么我们就需要添加一个面值为$s$ 的硬币,这样可以构造出$[0, 2s-1]$ 内的所有金额。然后我们再考虑$x$ 和$s$ 的大小关系,继续分析。
因此,我们将数组
时间复杂度
class Solution:
def minimumAddedCoins(self, coins: List[int], target: int) -> int:
coins.sort()
s = 1
ans = i = 0
while s <= target:
if i < len(coins) and coins[i] <= s:
s += coins[i]
i += 1
else:
s <<= 1
ans += 1
return ans
class Solution {
public int minimumAddedCoins(int[] coins, int target) {
Arrays.sort(coins);
int ans = 0;
for (int i = 0, s = 1; s <= target;) {
if (i < coins.length && coins[i] <= s) {
s += coins[i++];
} else {
s <<= 1;
++ans;
}
}
return ans;
}
}
class Solution {
public:
int minimumAddedCoins(vector<int>& coins, int target) {
sort(coins.begin(), coins.end());
int ans = 0;
for (int i = 0, s = 1; s <= target;) {
if (i < coins.size() && coins[i] <= s) {
s += coins[i++];
} else {
s <<= 1;
++ans;
}
}
return ans;
}
};
func minimumAddedCoins(coins []int, target int) (ans int) {
slices.Sort(coins)
for i, s := 0, 1; s <= target; {
if i < len(coins) && coins[i] <= s {
s += coins[i]
i++
} else {
s <<= 1
ans++
}
}
return
}
function minimumAddedCoins(coins: number[], target: number): number {
coins.sort((a, b) => a - b);
let ans = 0;
for (let i = 0, s = 1; s <= target; ) {
if (i < coins.length && coins[i] <= s) {
s += coins[i++];
} else {
s <<= 1;
++ans;
}
}
return ans;
}