Skip to content

Latest commit

 

History

History
275 lines (221 loc) · 8.94 KB

File metadata and controls

275 lines (221 loc) · 8.94 KB
comments difficulty edit_url rating source tags
true
中等
1677
第 118 场双周赛 Q2
数组
排序

English Version

题目描述

给你一个网格图,由 n + 2 条 横线段 和 m + 2 条 竖线段 组成,一开始所有区域均为 1 x 1 的单元格。

所有线段的编号从 1 开始。

给你两个整数 n 和 m 。

同时给你两个整数数组 hBars 和 vBars 。

  • hBars 包含区间 [2, n + 1] 内 互不相同 的横线段编号。
  • vBars 包含 [2, m + 1] 内 互不相同的 竖线段编号。

如果满足以下条件之一,你可以 移除 两个数组中的部分线段:

  • 如果移除的是横线段,它必须是 hBars 中的值。
  • 如果移除的是竖线段,它必须是 vBars 中的值。

请你返回移除一些线段后(可能不移除任何线段),剩余网格图中 最大正方形 空洞的面积,正方形空洞的意思是正方形 内部 不含有任何线段。

 

示例 1:

输入:n = 2, m = 1, hBars = [2,3], vBars = [2]
输出:4
解释:左边的图是一开始的网格图。
横线编号的范围是区间 [1,4] ,竖线编号的范围是区间 [1,3] 。
可以移除的横线段为 [2,3] ,竖线段为 [2] 。
一种得到最大正方形面积的方法是移除横线段 2 和竖线段 2 。
操作后得到的网格图如右图所示。
正方形空洞面积为 4。
无法得到面积大于 4 的正方形空洞。
所以答案为 4 。

示例 2:

输入:n = 1, m = 1, hBars = [2], vBars = [2]
输出:4
解释:左边的图是一开始的网格图。
横线编号的范围是区间 [1,3] ,竖线编号的范围是区间 [1,3] 。
可以移除的横线段为 [2] ,竖线段为 [2] 。
一种得到最大正方形面积的方法是移除横线段 2 和竖线段 2 。
操作后得到的网格图如右图所示。
正方形空洞面积为 4。
无法得到面积大于 4 的正方形空洞。
所以答案为 4 。

示例 3:

输入:n = 2, m = 3, hBars = [2,3], vBars = [2,3,4]
输出:9
解释:左边的图是一开始的网格图。
横线编号的范围是区间 [1,4] ,竖线编号的范围是区间 [1,5] 。
可以移除的横线段为 [2,3] ,竖线段为 [2,3,4] 。
一种得到最大正方形面积的方法是移除横线段 2、3 和竖线段 3、4 。
操作后得到的网格图如右图所示。
正方形空洞面积为 9。
无法得到面积大于 9 的正方形空洞。
所以答案为 9 。

 

提示:

  • 1 <= n <= 109
  • 1 <= m <= 109
  • 1 <= hBars.length <= 100
  • 2 <= hBars[i] <= n + 1
  • 1 <= vBars.length <= 100
  • 2 <= vBars[i] <= m + 1
  • hBars 中的值互不相同。
  • vBars 中的值互不相同。

解法

方法一:排序

题目实际上要我们找出数组中最长的连续递增子序列的长度,然后再加上 $1$

我们定义一个函数 $f(nums)$,表示数组 $nums$ 中最长的连续递增子序列的长度。

对于数组 $nums$,我们先对其进行排序,然后遍历数组,如果当前元素 $nums[i]$ 等于前一个元素 $nums[i - 1]$$1$,则说明当前元素可以加入到连续递增子序列中,否则,说明当前元素不能加入到连续递增子序列中,我们需要重新开始计算连续递增子序列的长度。最后,我们返回连续递增子序列的长度加 $1$

我们在求出 $hBars$$vBars$ 中最长的连续递增子序列的长度之后,我们取两者中的最小值作为正方形的边长,然后再求出正方形的面积即可。

时间复杂度 $O(n \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 $hBars$$vBars$ 的长度。

Python3

class Solution:
    def maximizeSquareHoleArea(
        self, n: int, m: int, hBars: List[int], vBars: List[int]
    ) -> int:
        def f(nums: List[int]) -> int:
            nums.sort()
            ans = cnt = 1
            for i in range(1, len(nums)):
                if nums[i] == nums[i - 1] + 1:
                    cnt += 1
                    ans = max(ans, cnt)
                else:
                    cnt = 1
            return ans + 1

        return min(f(hBars), f(vBars)) ** 2

Java

class Solution {
    public int maximizeSquareHoleArea(int n, int m, int[] hBars, int[] vBars) {
        int x = Math.min(f(hBars), f(vBars));
        return x * x;
    }

    private int f(int[] nums) {
        Arrays.sort(nums);
        int ans = 1, cnt = 1;
        for (int i = 1; i < nums.length; ++i) {
            if (nums[i] == nums[i - 1] + 1) {
                ans = Math.max(ans, ++cnt);
            } else {
                cnt = 1;
            }
        }
        return ans + 1;
    }
}

C++

class Solution {
public:
    int maximizeSquareHoleArea(int n, int m, vector<int>& hBars, vector<int>& vBars) {
        auto f = [](vector<int>& nums) {
            int ans = 1, cnt = 1;
            sort(nums.begin(), nums.end());
            for (int i = 1; i < nums.size(); ++i) {
                if (nums[i] == nums[i - 1] + 1) {
                    ans = max(ans, ++cnt);
                } else {
                    cnt = 1;
                }
            }
            return ans + 1;
        };
        int x = min(f(hBars), f(vBars));
        return x * x;
    }
};

Go

func maximizeSquareHoleArea(n int, m int, hBars []int, vBars []int) int {
	f := func(nums []int) int {
		sort.Ints(nums)
		ans, cnt := 1, 1
		for i, x := range nums[1:] {
			if x == nums[i]+1 {
				cnt++
				ans = max(ans, cnt)
			} else {
				cnt = 1
			}
		}
		return ans + 1
	}
	x := min(f(hBars), f(vBars))
	return x * x
}

TypeScript

function maximizeSquareHoleArea(n: number, m: number, hBars: number[], vBars: number[]): number {
    const f = (nums: number[]): number => {
        nums.sort((a, b) => a - b);
        let [ans, cnt] = [1, 1];
        for (let i = 1; i < nums.length; ++i) {
            if (nums[i] === nums[i - 1] + 1) {
                ans = Math.max(ans, ++cnt);
            } else {
                cnt = 1;
            }
        }
        return ans + 1;
    };
    return Math.min(f(hBars), f(vBars)) ** 2;
}

Rust

impl Solution {
    pub fn maximize_square_hole_area(n: i32, m: i32, h_bars: Vec<i32>, v_bars: Vec<i32>) -> i32 {
        let f = |nums: &mut Vec<i32>| -> i32 {
            let mut ans = 1;
            let mut cnt = 1;
            nums.sort();
            for i in 1..nums.len() {
                if nums[i] == nums[i - 1] + 1 {
                    cnt += 1;
                    ans = ans.max(cnt);
                } else {
                    cnt = 1;
                }
            }
            ans + 1
        };

        let mut h_bars = h_bars;
        let mut v_bars = v_bars;
        let x = f(&mut h_bars).min(f(&mut v_bars));
        x * x
    }
}