comments | difficulty | edit_url | tags | |
---|---|---|---|---|
true |
简单 |
|
DataFrame products
+-------------+--------+
| Column Name | Type |
+-------------+--------+
| name | object |
| quantity | int |
| price | int |
+-------------+--------+
编写一个解决方案,在 quantity
列中将缺失的值填充为 0
。
返回结果如下示例所示。
示例 1:
输入: +-----------------+----------+-------+ | name | quantity | price | +-----------------+----------+-------+ | Wristwatch | 32 | 135 | | WirelessEarbuds | None | 821 | | GolfClubs | None | 9319 | | Printer | 849 | 3051 | +-----------------+----------+-------+ 输出: +-----------------+----------+-------+ | name | quantity | price | +-----------------+----------+-------+ | Wristwatch | 32 | 135 | | WirelessEarbuds | 0 | 821 | | GolfClubs | 0 | 9319 | | Printer | 849 | 3051 | +-----------------+----------+-------+ 解释: Toaster 和 Headphones 的数量被填充为 0。
import pandas as pd
def fillMissingValues(products: pd.DataFrame) -> pd.DataFrame:
products['quantity'] = products['quantity'].fillna(0)
return products