Skip to content

Latest commit

 

History

History
277 lines (240 loc) · 6.99 KB

File metadata and controls

277 lines (240 loc) · 6.99 KB
comments difficulty edit_url rating source tags
true
困难
2223
第 92 场双周赛 Q4
字符串
动态规划

English Version

题目描述

给你数字字符串 s ,请你返回 s 中长度为 5 的 回文子序列 数目。由于答案可能很大,请你将答案对 109 + 7 取余 后返回。

提示:

  • 如果一个字符串从前往后和从后往前读相同,那么它是 回文字符串 。
  • 子序列是一个字符串中删除若干个字符后,不改变字符顺序,剩余字符构成的字符串。

 

示例 1:

输入:s = "103301"
输出:2
解释:
总共有 6 长度为 5 的子序列:"10330" ,"10331" ,"10301" ,"10301" ,"13301" ,"03301" 。
它们中有两个(都是 "10301")是回文的。

示例 2:

输入:s = "0000000"
输出:21
解释:所有 21 个长度为 5 的子序列都是 "00000" ,都是回文的。

示例 3:

输入:s = "9999900000"
输出:2
解释:仅有的两个回文子序列是 "99999" 和 "00000" 。

 

提示:

  • 1 <= s.length <= 104
  • s 只包含数字字符。

解法

方法一:枚举 + 计数

时间复杂度 $O(100 \times n)$,空间复杂度 $O(100 \times n)$。其中 $n$ 为字符串 $s$ 的长度。

Python3

class Solution:
    def countPalindromes(self, s: str) -> int:
        mod = 10**9 + 7
        n = len(s)
        pre = [[[0] * 10 for _ in range(10)] for _ in range(n + 2)]
        suf = [[[0] * 10 for _ in range(10)] for _ in range(n + 2)]
        t = list(map(int, s))
        c = [0] * 10
        for i, v in enumerate(t, 1):
            for j in range(10):
                for k in range(10):
                    pre[i][j][k] = pre[i - 1][j][k]
            for j in range(10):
                pre[i][j][v] += c[j]
            c[v] += 1
        c = [0] * 10
        for i in range(n, 0, -1):
            v = t[i - 1]
            for j in range(10):
                for k in range(10):
                    suf[i][j][k] = suf[i + 1][j][k]
            for j in range(10):
                suf[i][j][v] += c[j]
            c[v] += 1
        ans = 0
        for i in range(1, n + 1):
            for j in range(10):
                for k in range(10):
                    ans += pre[i - 1][j][k] * suf[i + 1][j][k]
                    ans %= mod
        return ans

Java

class Solution {
    private static final int MOD = (int) 1e9 + 7;

    public int countPalindromes(String s) {
        int n = s.length();
        int[][][] pre = new int[n + 2][10][10];
        int[][][] suf = new int[n + 2][10][10];
        int[] t = new int[n];
        for (int i = 0; i < n; ++i) {
            t[i] = s.charAt(i) - '0';
        }
        int[] c = new int[10];
        for (int i = 1; i <= n; ++i) {
            int v = t[i - 1];
            for (int j = 0; j < 10; ++j) {
                for (int k = 0; k < 10; ++k) {
                    pre[i][j][k] = pre[i - 1][j][k];
                }
            }
            for (int j = 0; j < 10; ++j) {
                pre[i][j][v] += c[j];
            }
            c[v]++;
        }
        c = new int[10];
        for (int i = n; i > 0; --i) {
            int v = t[i - 1];
            for (int j = 0; j < 10; ++j) {
                for (int k = 0; k < 10; ++k) {
                    suf[i][j][k] = suf[i + 1][j][k];
                }
            }
            for (int j = 0; j < 10; ++j) {
                suf[i][j][v] += c[j];
            }
            c[v]++;
        }
        long ans = 0;
        for (int i = 1; i <= n; ++i) {
            for (int j = 0; j < 10; ++j) {
                for (int k = 0; k < 10; ++k) {
                    ans += (long) pre[i - 1][j][k] * suf[i + 1][j][k];
                    ans %= MOD;
                }
            }
        }
        return (int) ans;
    }
}

C++

class Solution {
public:
    const int mod = 1e9 + 7;

    int countPalindromes(string s) {
        int n = s.size();
        int pre[n + 2][10][10];
        int suf[n + 2][10][10];
        memset(pre, 0, sizeof pre);
        memset(suf, 0, sizeof suf);
        int t[n];
        for (int i = 0; i < n; ++i) t[i] = s[i] - '0';
        int c[10] = {0};
        for (int i = 1; i <= n; ++i) {
            int v = t[i - 1];
            for (int j = 0; j < 10; ++j) {
                for (int k = 0; k < 10; ++k) {
                    pre[i][j][k] = pre[i - 1][j][k];
                }
            }
            for (int j = 0; j < 10; ++j) {
                pre[i][j][v] += c[j];
            }
            c[v]++;
        }
        memset(c, 0, sizeof c);
        for (int i = n; i > 0; --i) {
            int v = t[i - 1];
            for (int j = 0; j < 10; ++j) {
                for (int k = 0; k < 10; ++k) {
                    suf[i][j][k] = suf[i + 1][j][k];
                }
            }
            for (int j = 0; j < 10; ++j) {
                suf[i][j][v] += c[j];
            }
            c[v]++;
        }
        long ans = 0;
        for (int i = 1; i <= n; ++i) {
            for (int j = 0; j < 10; ++j) {
                for (int k = 0; k < 10; ++k) {
                    ans += 1ll * pre[i - 1][j][k] * suf[i + 1][j][k];
                    ans %= mod;
                }
            }
        }
        return ans;
    }
};

Go

func countPalindromes(s string) int {
	n := len(s)
	pre := [10010][10][10]int{}
	suf := [10010][10][10]int{}
	t := make([]int, n)
	for i, c := range s {
		t[i] = int(c - '0')
	}
	c := [10]int{}
	for i := 1; i <= n; i++ {
		v := t[i-1]
		for j := 0; j < 10; j++ {
			for k := 0; k < 10; k++ {
				pre[i][j][k] = pre[i-1][j][k]
			}
		}
		for j := 0; j < 10; j++ {
			pre[i][j][v] += c[j]
		}
		c[v]++
	}
	c = [10]int{}
	for i := n; i > 0; i-- {
		v := t[i-1]
		for j := 0; j < 10; j++ {
			for k := 0; k < 10; k++ {
				suf[i][j][k] = suf[i+1][j][k]
			}
		}
		for j := 0; j < 10; j++ {
			suf[i][j][v] += c[j]
		}
		c[v]++
	}
	ans := 0
	const mod int = 1e9 + 7
	for i := 1; i <= n; i++ {
		for j := 0; j < 10; j++ {
			for k := 0; k < 10; k++ {
				ans += pre[i-1][j][k] * suf[i+1][j][k]
				ans %= mod
			}
		}
	}
	return ans
}