comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
困难 |
1825 |
第 237 场周赛 Q4 |
|
列表的 异或和(XOR sum)指对所有元素进行按位 XOR
运算的结果。如果列表中仅有一个元素,那么其 异或和 就等于该元素。
- 例如,
[1,2,3,4]
的 异或和 等于1 XOR 2 XOR 3 XOR 4 = 4
,而[3]
的 异或和 等于3
。
给你两个下标 从 0 开始 计数的数组 arr1
和 arr2
,两数组均由非负整数组成。
根据每个 (i, j)
数对,构造一个由 arr1[i] AND arr2[j]
(按位 AND
运算)结果组成的列表。其中 0 <= i < arr1.length
且 0 <= j < arr2.length
。
返回上述列表的 异或和 。
示例 1:
输入:arr1 = [1,2,3], arr2 = [6,5] 输出:0 解释:列表 = [1 AND 6, 1 AND 5, 2 AND 6, 2 AND 5, 3 AND 6, 3 AND 5] = [0,1,2,0,2,1] , 异或和 = 0 XOR 1 XOR 2 XOR 0 XOR 2 XOR 1 = 0 。
示例 2:
输入:arr1 = [12], arr2 = [4] 输出:4 解释:列表 = [12 AND 4] = [4] ,异或和 = 4 。
提示:
1 <= arr1.length, arr2.length <= 105
0 <= arr1[i], arr2[j] <= 109
假设数组
由于布尔代数中,异或运算就是不进位的加法,与运算就是乘法,所以上式可以简化为:
即,数组
时间复杂度
class Solution:
def getXORSum(self, arr1: List[int], arr2: List[int]) -> int:
a = reduce(xor, arr1)
b = reduce(xor, arr2)
return a & b
class Solution {
public int getXORSum(int[] arr1, int[] arr2) {
int a = 0, b = 0;
for (int v : arr1) {
a ^= v;
}
for (int v : arr2) {
b ^= v;
}
return a & b;
}
}
class Solution {
public:
int getXORSum(vector<int>& arr1, vector<int>& arr2) {
int a = accumulate(arr1.begin(), arr1.end(), 0, bit_xor<int>());
int b = accumulate(arr2.begin(), arr2.end(), 0, bit_xor<int>());
return a & b;
}
};
func getXORSum(arr1 []int, arr2 []int) int {
var a, b int
for _, v := range arr1 {
a ^= v
}
for _, v := range arr2 {
b ^= v
}
return a & b
}
function getXORSum(arr1: number[], arr2: number[]): number {
const a = arr1.reduce((acc, x) => acc ^ x);
const b = arr2.reduce((acc, x) => acc ^ x);
return a & b;
}