comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
中等 |
1674 |
第 174 场周赛 Q3 |
|
给你一棵二叉树,它的根为 root
。请你删除 1 条边,使二叉树分裂成两棵子树,且它们子树和的乘积尽可能大。
由于答案可能会很大,请你将结果对 10^9 + 7 取模后再返回。
示例 1:
输入:root = [1,2,3,4,5,6] 输出:110 解释:删除红色的边,得到 2 棵子树,和分别为 11 和 10 。它们的乘积是 110 (11*10)
示例 2:
输入:root = [1,null,2,3,4,null,null,5,6] 输出:90 解释:移除红色的边,得到 2 棵子树,和分别是 15 和 6 。它们的乘积为 90 (15*6)
示例 3:
输入:root = [2,3,9,10,7,8,6,5,4,11,1] 输出:1025
示例 4:
输入:root = [1,1] 输出:1
提示:
- 每棵树最多有
50000
个节点,且至少有2
个节点。 - 每个节点的值在
[1, 10000]
之间。
我们可以用两次 DFS 来解决这个问题。
第一次,我们用一个
第二次,我们用一个
时间复杂度
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def maxProduct(self, root: Optional[TreeNode]) -> int:
def sum(root: Optional[TreeNode]) -> int:
if root is None:
return 0
return root.val + sum(root.left) + sum(root.right)
def dfs(root: Optional[TreeNode]) -> int:
if root is None:
return 0
t = root.val + dfs(root.left) + dfs(root.right)
nonlocal ans, s
if t < s:
ans = max(ans, t * (s - t))
return t
mod = 10**9 + 7
s = sum(root)
ans = 0
dfs(root)
return ans % mod
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private long ans;
private long s;
public int maxProduct(TreeNode root) {
final int mod = (int) 1e9 + 7;
s = sum(root);
dfs(root);
return (int) (ans % mod);
}
private long dfs(TreeNode root) {
if (root == null) {
return 0;
}
long t = root.val + dfs(root.left) + dfs(root.right);
if (t < s) {
ans = Math.max(ans, t * (s - t));
}
return t;
}
private long sum(TreeNode root) {
if (root == null) {
return 0;
}
return root.val + sum(root.left) + sum(root.right);
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int maxProduct(TreeNode* root) {
using ll = long long;
ll ans = 0;
const int mod = 1e9 + 7;
function<ll(TreeNode*)> sum = [&](TreeNode* root) -> ll {
if (!root) {
return 0;
}
return root->val + sum(root->left) + sum(root->right);
};
ll s = sum(root);
function<ll(TreeNode*)> dfs = [&](TreeNode* root) -> ll {
if (!root) {
return 0;
}
ll t = root->val + dfs(root->left) + dfs(root->right);
if (t < s) {
ans = max(ans, t * (s - t));
}
return t;
};
dfs(root);
return ans % mod;
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func maxProduct(root *TreeNode) (ans int) {
const mod = 1e9 + 7
var sum func(*TreeNode) int
sum = func(root *TreeNode) int {
if root == nil {
return 0
}
return root.Val + sum(root.Left) + sum(root.Right)
}
s := sum(root)
var dfs func(*TreeNode) int
dfs = func(root *TreeNode) int {
if root == nil {
return 0
}
t := root.Val + dfs(root.Left) + dfs(root.Right)
if t < s {
ans = max(ans, t*(s-t))
}
return t
}
dfs(root)
ans %= mod
return
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function maxProduct(root: TreeNode | null): number {
const sum = (root: TreeNode | null): number => {
if (!root) {
return 0;
}
return root.val + sum(root.left) + sum(root.right);
};
const s = sum(root);
let ans = 0;
const mod = 1e9 + 7;
const dfs = (root: TreeNode | null): number => {
if (!root) {
return 0;
}
const t = root.val + dfs(root.left) + dfs(root.right);
if (t < s) {
ans = Math.max(ans, t * (s - t));
}
return t;
};
dfs(root);
return ans % mod;
}