Skip to content

Latest commit

 

History

History
185 lines (145 loc) · 5 KB

File metadata and controls

185 lines (145 loc) · 5 KB
comments difficulty edit_url rating source tags
true
中等
2059
第 146 场周赛 Q4
数组
数学

English Version

题目描述

给你两个长度相等的整数数组,返回下面表达式的最大值:

|arr1[i] - arr1[j]| + |arr2[i] - arr2[j]| + |i - j|

其中下标 ij 满足 0 <= i, j < arr1.length

 

示例 1:

输入:arr1 = [1,2,3,4], arr2 = [-1,4,5,6]
输出:13

示例 2:

输入:arr1 = [1,-2,-5,0,10], arr2 = [0,-2,-1,-7,-4]
输出:20

 

提示:

  • 2 <= arr1.length == arr2.length <= 40000
  • -10^6 <= arr1[i], arr2[i] <= 10^6

解法

方法一:数学 + 枚举

我们不妨令 $x_i = arr1[i]$, $y_i = arr2[i]$,由于 $i$$j$ 的大小关系不影响表达式的值,我们不妨假设 $i \ge j$,那么表达式可以变为:

$$ | x_i - x_j | + | y_i - y_j | + i - j = \max \begin{cases} (x_i + y_i) - (x_j + y_j) \ (x_i - y_i) - (x_j - y_j) \ (-x_i + y_i) - (-x_j + y_j) \ (-x_i - y_i) - (-x_j - y_j) \end{cases} + i - j\\ = \max \begin{cases} (x_i + y_i + i) - (x_j + y_j + j) \ (x_i - y_i + i) - (x_j - y_j + j) \ (-x_i + y_i + i) - (-x_j + y_j + j) \ (-x_i - y_i + i) - (-x_j - y_j + j) \end{cases} $$

因此,我们只要求出 $a \times x_i + b \times y_i + i$ 的最大值 $mx$,以及最小值 $mi$,其中 $a, b \in {-1, 1}$。那么答案就是所有 $mx - mi$ 中的最大值。

时间复杂度 $O(n)$,其中 $n$ 是数组长度。空间复杂度 $O(1)$

相似题目:

Python3

class Solution:
    def maxAbsValExpr(self, arr1: List[int], arr2: List[int]) -> int:
        dirs = (1, -1, -1, 1, 1)
        ans = -inf
        for a, b in pairwise(dirs):
            mx, mi = -inf, inf
            for i, (x, y) in enumerate(zip(arr1, arr2)):
                mx = max(mx, a * x + b * y + i)
                mi = min(mi, a * x + b * y + i)
                ans = max(ans, mx - mi)
        return ans

Java

class Solution {
    public int maxAbsValExpr(int[] arr1, int[] arr2) {
        int[] dirs = {1, -1, -1, 1, 1};
        final int inf = 1 << 30;
        int ans = -inf;
        int n = arr1.length;
        for (int k = 0; k < 4; ++k) {
            int a = dirs[k], b = dirs[k + 1];
            int mx = -inf, mi = inf;
            for (int i = 0; i < n; ++i) {
                mx = Math.max(mx, a * arr1[i] + b * arr2[i] + i);
                mi = Math.min(mi, a * arr1[i] + b * arr2[i] + i);
                ans = Math.max(ans, mx - mi);
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    int maxAbsValExpr(vector<int>& arr1, vector<int>& arr2) {
        int dirs[5] = {1, -1, -1, 1, 1};
        const int inf = 1 << 30;
        int ans = -inf;
        int n = arr1.size();
        for (int k = 0; k < 4; ++k) {
            int a = dirs[k], b = dirs[k + 1];
            int mx = -inf, mi = inf;
            for (int i = 0; i < n; ++i) {
                mx = max(mx, a * arr1[i] + b * arr2[i] + i);
                mi = min(mi, a * arr1[i] + b * arr2[i] + i);
                ans = max(ans, mx - mi);
            }
        }
        return ans;
    }
};

Go

func maxAbsValExpr(arr1 []int, arr2 []int) int {
	dirs := [5]int{1, -1, -1, 1, 1}
	const inf = 1 << 30
	ans := -inf
	for k := 0; k < 4; k++ {
		a, b := dirs[k], dirs[k+1]
		mx, mi := -inf, inf
		for i, x := range arr1 {
			y := arr2[i]
			mx = max(mx, a*x+b*y+i)
			mi = min(mi, a*x+b*y+i)
			ans = max(ans, mx-mi)
		}
	}
	return ans
}

TypeScript

function maxAbsValExpr(arr1: number[], arr2: number[]): number {
    const dirs = [1, -1, -1, 1, 1];
    const inf = 1 << 30;
    let ans = -inf;
    for (let k = 0; k < 4; ++k) {
        const [a, b] = [dirs[k], dirs[k + 1]];
        let mx = -inf;
        let mi = inf;
        for (let i = 0; i < arr1.length; ++i) {
            const [x, y] = [arr1[i], arr2[i]];
            mx = Math.max(mx, a * x + b * y + i);
            mi = Math.min(mi, a * x + b * y + i);
            ans = Math.max(ans, mx - mi);
        }
    }
    return ans;
}