Skip to content

Latest commit

 

History

History
282 lines (237 loc) · 9.46 KB

File metadata and controls

282 lines (237 loc) · 9.46 KB
comments difficulty edit_url tags
true
中等
几何
数组
数学

English Version

题目描述

给定在 xy 平面上的一组点,确定由这些点组成的任何矩形的最小面积,其中矩形的边不一定平行于 x 轴和 y 轴。

如果没有任何矩形,就返回 0。

 

示例 1:

输入:[[1,2],[2,1],[1,0],[0,1]]
输出:2.00000
解释:最小面积的矩形出现在 [1,2],[2,1],[1,0],[0,1] 处,面积为 2。

示例 2:

输入:[[0,1],[2,1],[1,1],[1,0],[2,0]]
输出:1.00000
解释:最小面积的矩形出现在 [1,0],[1,1],[2,1],[2,0] 处,面积为 1。

示例 3:

输入:[[0,3],[1,2],[3,1],[1,3],[2,1]]
输出:0
解释:没法从这些点中组成任何矩形。

示例 4:

输入:[[3,1],[1,1],[0,1],[2,1],[3,3],[3,2],[0,2],[2,3]]
输出:2.00000
解释:最小面积的矩形出现在 [2,1],[2,3],[3,3],[3,1] 处,面积为 2。

 

提示:

  1. 1 <= points.length <= 50
  2. 0 <= points[i][0] <= 40000
  3. 0 <= points[i][1] <= 40000
  4. 所有的点都是不同的。
  5. 与真实值误差不超过 10^-5 的答案将视为正确结果。

解法

方法一:哈希表 + 枚举

我们用哈希表存放所有的点,然后枚举三个点 $p_1 = (x_1, y_1)$, $p_2 = (x_2, y_2)$, $p_3 = (x_3, y_3)$,其中 $p_2$$p_3$ 是矩形的对角线的两个端点。如果 $p_1$$p_2$ 构成的直线以及 $p_1$$p_3$ 构成的直线垂直,并且第四个点 $(x_4, y_4)=(x_2 - x_1 + x_3, y_2 - y_1 + y_3)$ 存在于哈希表中,那么就找到了一个矩形。此时,我们可以计算出矩形的面积,并更新答案。

最后,如果找到满足条件的矩形,返回其中面积的最小值。否则,返回 $0$

时间复杂度 $O(n^3)$,空间复杂度 $O(n)$。其中 $n$ 为数组 $points$ 的长度。

Python3

class Solution:
    def minAreaFreeRect(self, points: List[List[int]]) -> float:
        s = {(x, y) for x, y in points}
        n = len(points)
        ans = inf
        for i in range(n):
            x1, y1 = points[i]
            for j in range(n):
                if j != i:
                    x2, y2 = points[j]
                    for k in range(j + 1, n):
                        if k != i:
                            x3, y3 = points[k]
                            x4 = x2 - x1 + x3
                            y4 = y2 - y1 + y3
                            if (x4, y4) in s:
                                v21 = (x2 - x1, y2 - y1)
                                v31 = (x3 - x1, y3 - y1)
                                if v21[0] * v31[0] + v21[1] * v31[1] == 0:
                                    w = sqrt(v21[0] ** 2 + v21[1] ** 2)
                                    h = sqrt(v31[0] ** 2 + v31[1] ** 2)
                                    ans = min(ans, w * h)
        return 0 if ans == inf else ans

Java

class Solution {
    public double minAreaFreeRect(int[][] points) {
        int n = points.length;
        Set<Integer> s = new HashSet<>(n);
        for (int[] p : points) {
            s.add(f(p[0], p[1]));
        }
        double ans = Double.MAX_VALUE;
        for (int i = 0; i < n; ++i) {
            int x1 = points[i][0], y1 = points[i][1];
            for (int j = 0; j < n; ++j) {
                if (j != i) {
                    int x2 = points[j][0], y2 = points[j][1];
                    for (int k = j + 1; k < n; ++k) {
                        if (k != i) {
                            int x3 = points[k][0], y3 = points[k][1];
                            int x4 = x2 - x1 + x3, y4 = y2 - y1 + y3;
                            if (s.contains(f(x4, y4))) {
                                if ((x2 - x1) * (x3 - x1) + (y2 - y1) * (y3 - y1) == 0) {
                                    int ww = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1);
                                    int hh = (x3 - x1) * (x3 - x1) + (y3 - y1) * (y3 - y1);
                                    ans = Math.min(ans, Math.sqrt(1L * ww * hh));
                                }
                            }
                        }
                    }
                }
            }
        }
        return ans == Double.MAX_VALUE ? 0 : ans;
    }

    private int f(int x, int y) {
        return x * 40001 + y;
    }
}

C++

class Solution {
public:
    double minAreaFreeRect(vector<vector<int>>& points) {
        auto f = [](int x, int y) {
            return x * 40001 + y;
        };
        int n = points.size();
        unordered_set<int> s;
        for (auto& p : points) {
            s.insert(f(p[0], p[1]));
        }
        double ans = 1e20;
        for (int i = 0; i < n; ++i) {
            int x1 = points[i][0], y1 = points[i][1];
            for (int j = 0; j < n; ++j) {
                if (j != i) {
                    int x2 = points[j][0], y2 = points[j][1];
                    for (int k = j + 1; k < n; ++k) {
                        if (k != i) {
                            int x3 = points[k][0], y3 = points[k][1];
                            int x4 = x2 - x1 + x3, y4 = y2 - y1 + y3;
                            if (x4 >= 0 && x4 < 40000 && y4 >= 0 && y4 <= 40000 && s.count(f(x4, y4))) {
                                if ((x2 - x1) * (x3 - x1) + (y2 - y1) * (y3 - y1) == 0) {
                                    int ww = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1);
                                    int hh = (x3 - x1) * (x3 - x1) + (y3 - y1) * (y3 - y1);
                                    ans = min(ans, sqrt(1LL * ww * hh));
                                }
                            }
                        }
                    }
                }
            }
        }
        return ans == 1e20 ? 0 : ans;
    }
};

Go

func minAreaFreeRect(points [][]int) float64 {
	n := len(points)
	f := func(x, y int) int {
		return x*40001 + y
	}
	s := map[int]bool{}
	for _, p := range points {
		s[f(p[0], p[1])] = true
	}
	ans := 1e20
	for i := 0; i < n; i++ {
		x1, y1 := points[i][0], points[i][1]
		for j := 0; j < n; j++ {
			if j != i {
				x2, y2 := points[j][0], points[j][1]
				for k := j + 1; k < n; k++ {
					if k != i {
						x3, y3 := points[k][0], points[k][1]
						x4, y4 := x2-x1+x3, y2-y1+y3
						if s[f(x4, y4)] {
							if (x2-x1)*(x3-x1)+(y2-y1)*(y3-y1) == 0 {
								ww := (x2-x1)*(x2-x1) + (y2-y1)*(y2-y1)
								hh := (x3-x1)*(x3-x1) + (y3-y1)*(y3-y1)
								ans = math.Min(ans, math.Sqrt(float64(ww*hh)))
							}
						}
					}
				}
			}
		}
	}
	if ans == 1e20 {
		return 0
	}
	return ans
}

TypeScript

function minAreaFreeRect(points: number[][]): number {
    const n = points.length;
    const f = (x: number, y: number): number => x * 40001 + y;
    const s: Set<number> = new Set();
    for (const [x, y] of points) {
        s.add(f(x, y));
    }
    let ans = Number.MAX_VALUE;
    for (let i = 0; i < n; ++i) {
        const [x1, y1] = points[i];
        for (let j = 0; j < n; ++j) {
            if (j !== i) {
                const [x2, y2] = points[j];
                for (let k = j + 1; k < n; ++k) {
                    if (k !== i) {
                        const [x3, y3] = points[k];
                        const x4 = x2 - x1 + x3;
                        const y4 = y2 - y1 + y3;
                        if (s.has(f(x4, y4))) {
                            if ((x2 - x1) * (x3 - x1) + (y2 - y1) * (y3 - y1) === 0) {
                                const ww = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1);
                                const hh = (x3 - x1) * (x3 - x1) + (y3 - y1) * (y3 - y1);
                                ans = Math.min(ans, Math.sqrt(ww * hh));
                            }
                        }
                    }
                }
            }
        }
    }
    return ans === Number.MAX_VALUE ? 0 : ans;
}