Skip to content

Latest commit

 

History

History
303 lines (237 loc) · 7.01 KB

File metadata and controls

303 lines (237 loc) · 7.01 KB
comments difficulty edit_url tags
true
简单
设计
二叉搜索树
二叉树
数据流
堆(优先队列)

English Version

题目描述

设计一个找到数据流中第 k 大元素的类(class)。注意是排序后的第 k 大元素,不是第 k 个不同的元素。

请实现 KthLargest 类:

  • KthLargest(int k, int[] nums) 使用整数 k 和整数流 nums 初始化对象。
  • int add(int val)val 插入数据流 nums 后,返回当前数据流中第 k 大的元素。

 

示例 1:

输入:
["KthLargest", "add", "add", "add", "add", "add"]
[[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]]

输出:[null, 4, 5, 5, 8, 8]

解释:

KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]);
kthLargest.add(3); // 返回 4
kthLargest.add(5); // 返回 5
kthLargest.add(10); // 返回 5
kthLargest.add(9); // 返回 8
kthLargest.add(4); // 返回 8

 

示例 2:

输入:
["KthLargest", "add", "add", "add", "add"]
[[4, [7, 7, 7, 7, 8, 3]], [2], [10], [9], [9]]

输出:[null, 7, 7, 7, 8]

解释:

KthLargest kthLargest = new KthLargest(4, [7, 7, 7, 7, 8, 3]);
kthLargest.add(2); // 返回 7
kthLargest.add(10); // 返回 7
kthLargest.add(9); // 返回 7
kthLargest.add(9); // 返回 8

 

提示:
  • 0 <= nums.length <= 104
  • 1 <= k <= nums.length + 1
  • -104 <= nums[i] <= 104
  • -104 <= val <= 104
  • 最多调用 add 方法 104

解法

方法一:优先队列(小根堆)

我们维护一个优先队列(小根堆)$\textit{minQ}$。

初始化时,我们将数组 $\textit{nums}$ 中的元素依次加入 $\textit{minQ}$,并保持 $\textit{minQ}$ 的大小不超过 $k$。时间复杂度 $O(n \times \log k)$

每次加入一个新元素时,如果 $\textit{minQ}$ 的大小超过了 $k$,我们就将堆顶元素弹出,保证 $\textit{minQ}$ 的大小为 $k$。时间复杂度 $O(\log k)$

这样,$\textit{minQ}$ 中的元素就是数组 $\textit{nums}$ 中最大的 $k$ 个元素,堆顶元素就是第 $k$ 大的元素。

空间复杂度 $O(k)$

Python3

class KthLargest:

    def __init__(self, k: int, nums: List[int]):
        self.k = k
        self.min_q = []
        for x in nums:
            self.add(x)

    def add(self, val: int) -> int:
        heappush(self.min_q, val)
        if len(self.min_q) > self.k:
            heappop(self.min_q)
        return self.min_q[0]


# Your KthLargest object will be instantiated and called as such:
# obj = KthLargest(k, nums)
# param_1 = obj.add(val)

Java

class KthLargest {
    private PriorityQueue<Integer> minQ;
    private int k;

    public KthLargest(int k, int[] nums) {
        this.k = k;
        minQ = new PriorityQueue<>(k);
        for (int x : nums) {
            add(x);
        }
    }

    public int add(int val) {
        minQ.offer(val);
        if (minQ.size() > k) {
            minQ.poll();
        }
        return minQ.peek();
    }
}

/**
 * Your KthLargest object will be instantiated and called as such:
 * KthLargest obj = new KthLargest(k, nums);
 * int param_1 = obj.add(val);
 */

C++

class KthLargest {
public:
    KthLargest(int k, vector<int>& nums) {
        this->k = k;
        for (int x : nums) {
            add(x);
        }
    }

    int add(int val) {
        minQ.push(val);
        if (minQ.size() > k) {
            minQ.pop();
        }
        return minQ.top();
    }

private:
    int k;
    priority_queue<int, vector<int>, greater<int>> minQ;
};

/**
 * Your KthLargest object will be instantiated and called as such:
 * KthLargest* obj = new KthLargest(k, nums);
 * int param_1 = obj->add(val);
 */

Go

type KthLargest struct {
	k    int
	minQ hp
}

func Constructor(k int, nums []int) KthLargest {
	minQ := hp{}
	this := KthLargest{k, minQ}
	for _, x := range nums {
		this.Add(x)
	}
	return this
}

func (this *KthLargest) Add(val int) int {
	heap.Push(&this.minQ, val)
	if this.minQ.Len() > this.k {
		heap.Pop(&this.minQ)
	}
	return this.minQ.IntSlice[0]
}

type hp struct{ sort.IntSlice }

func (h *hp) Less(i, j int) bool { return h.IntSlice[i] < h.IntSlice[j] }
func (h *hp) Pop() interface{} {
	old := h.IntSlice
	n := len(old)
	x := old[n-1]
	h.IntSlice = old[0 : n-1]
	return x
}
func (h *hp) Push(x interface{}) {
	h.IntSlice = append(h.IntSlice, x.(int))
}

/**
 * Your KthLargest object will be instantiated and called as such:
 * obj := Constructor(k, nums);
 * param_1 := obj.Add(val);
 */

TypeScript

class KthLargest {
    #k: number = 0;
    #minQ = new MinPriorityQueue();

    constructor(k: number, nums: number[]) {
        this.#k = k;
        for (const x of nums) {
            this.add(x);
        }
    }

    add(val: number): number {
        this.#minQ.enqueue(val);
        if (this.#minQ.size() > this.#k) {
            this.#minQ.dequeue();
        }
        return this.#minQ.front().element;
    }
}

/**
 * Your KthLargest object will be instantiated and called as such:
 * var obj = new KthLargest(k, nums)
 * var param_1 = obj.add(val)
 */

JavaScript

/**
 * @param {number} k
 * @param {number[]} nums
 */
var KthLargest = function (k, nums) {
    this.k = k;
    this.minQ = new MinPriorityQueue();
    for (const x of nums) {
        this.add(x);
    }
};

/**
 * @param {number} val
 * @return {number}
 */
KthLargest.prototype.add = function (val) {
    this.minQ.enqueue(val);
    if (this.minQ.size() > this.k) {
        this.minQ.dequeue();
    }
    return this.minQ.front().element;
};

/**
 * Your KthLargest object will be instantiated and called as such:
 * var obj = new KthLargest(k, nums)
 * var param_1 = obj.add(val)
 */