Skip to content

Latest commit

 

History

History
182 lines (137 loc) · 3.61 KB

File metadata and controls

182 lines (137 loc) · 3.61 KB
comments difficulty edit_url tags
true
简单
深度优先搜索
广度优先搜索

English Version

题目描述

给定一个 N 叉树,找到其最大深度。

最大深度是指从根节点到最远叶子节点的最长路径上的节点总数。

N 叉树输入按层序遍历序列化表示,每组子节点由空值分隔(请参见示例)。

 

示例 1:

输入:root = [1,null,3,2,4,null,5,6]
输出:3

示例 2:

输入:root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
输出:5

 

提示:

  • 树的深度不会超过 1000
  • 树的节点数目位于 [0, 104] 之间。

解法

方法一

Python3

"""
# Definition for a Node.
class Node:
    def __init__(self, val=None, children=None):
        self.val = val
        self.children = children
"""


class Solution:
    def maxDepth(self, root: 'Node') -> int:
        if root is None:
            return 0
        return 1 + max([self.maxDepth(child) for child in root.children], default=0)

Java

/*
// Definition for a Node.
class Node {
    public int val;
    public List<Node> children;

    public Node() {}

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, List<Node> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
    public int maxDepth(Node root) {
        if (root == null) {
            return 0;
        }
        int ans = 1;
        for (Node child : root.children) {
            ans = Math.max(ans, 1 + maxDepth(child));
        }
        return ans;
    }
}

C++

/*
// Definition for a Node.
class Node {
public:
    int val;
    vector<Node*> children;

    Node() {}

    Node(int _val) {
        val = _val;
    }

    Node(int _val, vector<Node*> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
public:
    int maxDepth(Node* root) {
        if (!root) return 0;
        int ans = 1;
        for (auto& child : root->children) ans = max(ans, 1 + maxDepth(child));
        return ans;
    }
};

Go

/**
 * Definition for a Node.
 * type Node struct {
 *     Val int
 *     Children []*Node
 * }
 */

func maxDepth(root *Node) int {
	if root == nil {
		return 0
	}
	ans := 1
	for _, child := range root.Children {
		ans = max(ans, 1+maxDepth(child))
	}
	return ans
}