Skip to content

Latest commit

 

History

History
388 lines (339 loc) · 10.7 KB

File metadata and controls

388 lines (339 loc) · 10.7 KB
comments difficulty edit_url tags
true
中等
二叉搜索树
二叉树

English Version

题目描述

给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。

一般来说,删除节点可分为两个步骤:

  1. 首先找到需要删除的节点;
  2. 如果找到了,删除它。

 

示例 1:

输入:root = [5,3,6,2,4,null,7], key = 3
输出:[5,4,6,2,null,null,7]
解释:给定需要删除的节点值是 3,所以我们首先找到 3 这个节点,然后删除它。
一个正确的答案是 [5,4,6,2,null,null,7], 如下图所示。
另一个正确答案是 [5,2,6,null,4,null,7]。


示例 2:

输入: root = [5,3,6,2,4,null,7], key = 0
输出: [5,3,6,2,4,null,7]
解释: 二叉树不包含值为 0 的节点

示例 3:

输入: root = [], key = 0
输出: []

 

提示:

  • 节点数的范围 [0, 104].
  • -105 <= Node.val <= 105
  • 节点值唯一
  • root 是合法的二叉搜索树
  • -105 <= key <= 105

 

进阶: 要求算法时间复杂度为 O(h),h 为树的高度。

解法

方法一:递归

二叉搜索树有以下性质:

  1. 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
  2. 若任意节点的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
  3. 任意节点的左、右子树也分别为二叉搜索树。

我们可以递归判断当前节点 $root$$key$ 的大小关系:

  1. $root.val&gt;key$,则递归左子树;
  2. $root.val&lt;key$,则递归右子树;
  3. $root.val=key$,则进一步判断:
    1. $root$ 没有左子树,则 $root.right$ 顶替 $root$ 的位置;
    2. $root$ 没有右子树,则 $root.left$ 顶替 $root$ 的位置;
    3. $root$ 同时存在左右子树,则将左子树转移至右子树的最左节点的左子树上,然后 $root.right$ 顶替 $root$ 的位置。

时间复杂度 $O(H)$,其中 $H$ 是树的高度。

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def deleteNode(self, root: Optional[TreeNode], key: int) -> Optional[TreeNode]:
        if root is None:
            return None
        if root.val > key:
            root.left = self.deleteNode(root.left, key)
            return root
        if root.val < key:
            root.right = self.deleteNode(root.right, key)
            return root
        if root.left is None:
            return root.right
        if root.right is None:
            return root.left
        node = root.right
        while node.left:
            node = node.left
        node.left = root.left
        root = root.right
        return root

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode deleteNode(TreeNode root, int key) {
        if (root == null) {
            return null;
        }
        if (root.val > key) {
            root.left = deleteNode(root.left, key);
            return root;
        }
        if (root.val < key) {
            root.right = deleteNode(root.right, key);
            return root;
        }
        if (root.left == null) {
            return root.right;
        }
        if (root.right == null) {
            return root.left;
        }
        TreeNode node = root.right;
        while (node.left != null) {
            node = node.left;
        }
        node.left = root.left;
        root = root.right;
        return root;
    }
}

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* deleteNode(TreeNode* root, int key) {
        if (!root) return root;
        if (root->val > key) {
            root->left = deleteNode(root->left, key);
            return root;
        }
        if (root->val < key) {
            root->right = deleteNode(root->right, key);
            return root;
        }
        if (!root->left) return root->right;
        if (!root->right) return root->left;
        TreeNode* node = root->right;
        while (node->left) node = node->left;
        node->left = root->left;
        root = root->right;
        return root;
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func deleteNode(root *TreeNode, key int) *TreeNode {
	if root == nil {
		return nil
	}
	if root.Val > key {
		root.Left = deleteNode(root.Left, key)
		return root
	}
	if root.Val < key {
		root.Right = deleteNode(root.Right, key)
		return root
	}
	if root.Left == nil {
		return root.Right
	}
	if root.Right == nil {
		return root.Left
	}
	node := root.Right
	for node.Left != nil {
		node = node.Left
	}
	node.Left = root.Left
	root = root.Right
	return root
}

TypeScript

/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function deleteNode(root: TreeNode | null, key: number): TreeNode | null {
    if (root == null) {
        return root;
    }
    const { val, left, right } = root;
    if (val > key) {
        root.left = deleteNode(left, key);
    } else if (val < key) {
        root.right = deleteNode(right, key);
    } else {
        if (left == null && right == null) {
            root = null;
        } else if (left == null || right == null) {
            root = left || right;
        } else {
            if (right.left == null) {
                right.left = left;
                root = right;
            } else {
                let minPreNode = right;
                while (minPreNode.left.left != null) {
                    minPreNode = minPreNode.left;
                }
                const minVal = minPreNode.left.val;
                root.val = minVal;
                minPreNode.left = deleteNode(minPreNode.left, minVal);
            }
        }
    }
    return root;
}

Rust

// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
    fn dfs(root: &Option<Rc<RefCell<TreeNode>>>) -> i32 {
        let node = root.as_ref().unwrap().borrow();
        if node.left.is_none() {
            return node.val;
        }
        Self::dfs(&node.left)
    }

    pub fn delete_node(
        mut root: Option<Rc<RefCell<TreeNode>>>,
        key: i32,
    ) -> Option<Rc<RefCell<TreeNode>>> {
        if root.is_some() {
            let mut node = root.as_mut().unwrap().borrow_mut();
            match node.val.cmp(&key) {
                std::cmp::Ordering::Less => {
                    node.right = Self::delete_node(node.right.take(), key);
                }
                std::cmp::Ordering::Greater => {
                    node.left = Self::delete_node(node.left.take(), key);
                }
                std::cmp::Ordering::Equal => {
                    match (node.left.is_some(), node.right.is_some()) {
                        (false, false) => {
                            return None;
                        }
                        (true, false) => {
                            return node.left.take();
                        }
                        (false, true) => {
                            return node.right.take();
                        }
                        (true, true) => {
                            if node.right.as_ref().unwrap().borrow().left.is_none() {
                                let mut r = node.right.take();
                                r.as_mut().unwrap().borrow_mut().left = node.left.take();
                                return r;
                            } else {
                                let val = Self::dfs(&node.right);
                                node.val = val;
                                node.right = Self::delete_node(node.right.take(), val);
                            }
                        }
                    };
                }
            }
        }
        root
    }
}