comments | difficulty | edit_url | tags | ||||
---|---|---|---|---|---|---|---|
true |
简单 |
|
给定二叉树的根节点 root
,返回所有左叶子之和。
示例 1:
输入: root = [3,9,20,null,null,15,7] 输出: 24 解释: 在这个二叉树中,有两个左叶子,分别是 9 和 15,所以返回 24
示例 2:
输入: root = [1] 输出: 0
提示:
- 节点数在
[1, 1000]
范围内 -1000 <= Node.val <= 1000
我们首先判断 root
是否为空,如果为空则返回
否则,我们递归调用 sumOfLeftLeaves
函数计算 root
的右子树中所有左叶子之和,并将结果赋给答案变量 root
的左子节点是否存在,如果存在,我们判断其是否为叶子节点,如果是叶子节点,则将其值加到答案变量 sumOfLeftLeaves
函数计算 root
的左子树中所有左叶子之和,并将结果加到答案变量
最后返回答案即可。
时间复杂度
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def sumOfLeftLeaves(self, root: Optional[TreeNode]) -> int:
if root is None:
return 0
ans = self.sumOfLeftLeaves(root.right)
if root.left:
if root.left.left == root.left.right:
ans += root.left.val
else:
ans += self.sumOfLeftLeaves(root.left)
return ans
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int sumOfLeftLeaves(TreeNode root) {
if (root == null) {
return 0;
}
int ans = sumOfLeftLeaves(root.right);
if (root.left != null) {
if (root.left.left == root.left.right) {
ans += root.left.val;
} else {
ans += sumOfLeftLeaves(root.left);
}
}
return ans;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int sumOfLeftLeaves(TreeNode* root) {
if (!root) {
return 0;
}
int ans = sumOfLeftLeaves(root->right);
if (root->left) {
if (!root->left->left && !root->left->right) {
ans += root->left->val;
} else {
ans += sumOfLeftLeaves(root->left);
}
}
return ans;
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func sumOfLeftLeaves(root *TreeNode) int {
if root == nil {
return 0
}
ans := sumOfLeftLeaves(root.Right)
if root.Left != nil {
if root.Left.Left == root.Left.Right {
ans += root.Left.Val
} else {
ans += sumOfLeftLeaves(root.Left)
}
}
return ans
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function sumOfLeftLeaves(root: TreeNode | null): number {
if (!root) {
return 0;
}
let ans = sumOfLeftLeaves(root.right);
if (root.left) {
if (root.left.left === root.left.right) {
ans += root.left.val;
} else {
ans += sumOfLeftLeaves(root.left);
}
}
return ans;
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
fn dfs(root: &Option<Rc<RefCell<TreeNode>>>, is_left: bool) -> i32 {
if root.is_none() {
return 0;
}
let node = root.as_ref().unwrap().borrow();
let left = &node.left;
let right = &node.right;
if left.is_none() && right.is_none() {
if is_left {
return node.val;
}
return 0;
}
Self::dfs(left, true) + Self::dfs(right, false)
}
pub fn sum_of_left_leaves(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
Self::dfs(&root, false)
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
int sumOfLeftLeaves(struct TreeNode* root) {
if (!root) {
return 0;
}
int ans = sumOfLeftLeaves(root->right);
if (root->left) {
if (!root->left->left && !root->left->right) {
ans += root->left->val;
} else {
ans += sumOfLeftLeaves(root->left);
}
}
return ans;
}
我们也可以将方法一的递归改为迭代,使用栈来模拟递归的过程。
与方法一类似,我们首先判断 root
是否为空,如果为空则返回
否则,我们初始化答案变量 root
加入栈中。
当栈不为空时,我们弹出栈顶元素 root
,如果 root
的左子节点存在,我们判断其是否为叶子节点,如果是叶子节点,则将其值加到答案变量 root
的右子节点是否存在,如果存在,我们将其加入栈中。
最后返回答案即可。
时间复杂度
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def sumOfLeftLeaves(self, root: Optional[TreeNode]) -> int:
if root is None:
return 0
ans = 0
stk = [root]
while stk:
root = stk.pop()
if root.left:
if root.left.left == root.left.right:
ans += root.left.val
else:
stk.append(root.left)
if root.right:
stk.append(root.right)
return ans
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int sumOfLeftLeaves(TreeNode root) {
if (root == null) {
return 0;
}
Deque<TreeNode> stk = new ArrayDeque<>();
stk.push(root);
int ans = 0;
while (!stk.isEmpty()) {
root = stk.pop();
if (root.left != null) {
if (root.left.left == root.left.right) {
ans += root.left.val;
} else {
stk.push(root.left);
}
}
if (root.right != null) {
stk.push(root.right);
}
}
return ans;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int sumOfLeftLeaves(TreeNode* root) {
if (!root) {
return 0;
}
int ans = 0;
stack<TreeNode*> stk{{root}};
while (!stk.empty()) {
root = stk.top(), stk.pop();
if (root->left) {
if (!root->left->left && !root->left->right) {
ans += root->left->val;
} else {
stk.push(root->left);
}
}
if (root->right) {
stk.push(root->right);
}
}
return ans;
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func sumOfLeftLeaves(root *TreeNode) (ans int) {
if root == nil {
return 0
}
stk := []*TreeNode{root}
for len(stk) > 0 {
root = stk[len(stk)-1]
stk = stk[:len(stk)-1]
if root.Left != nil {
if root.Left.Left == root.Left.Right {
ans += root.Left.Val
} else {
stk = append(stk, root.Left)
}
}
if root.Right != nil {
stk = append(stk, root.Right)
}
}
return
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function sumOfLeftLeaves(root: TreeNode | null): number {
if (!root) {
return 0;
}
let ans = 0;
const stk: TreeNode[] = [root];
while (stk.length) {
const { left, right } = stk.pop()!;
if (left) {
if (left.left === left.right) {
ans += left.val;
} else {
stk.push(left);
}
}
if (right) {
stk.push(right);
}
}
return ans;
}