Skip to content

Latest commit

 

History

History
150 lines (114 loc) · 3.56 KB

File metadata and controls

150 lines (114 loc) · 3.56 KB
comments difficulty edit_url tags
true
中等
数组
动态规划

English Version

题目描述

假如有一排房子,共 n 个,每个房子可以被粉刷成红色、蓝色或者绿色这三种颜色中的一种,你需要粉刷所有的房子并且使其相邻的两个房子颜色不能相同。

当然,因为市场上不同颜色油漆的价格不同,所以房子粉刷成不同颜色的花费成本也是不同的。每个房子粉刷成不同颜色的花费是以一个 n x 3 的正整数矩阵 costs 来表示的。

例如,costs[0][0] 表示第 0 号房子粉刷成红色的成本花费;costs[1][2] 表示第 1 号房子粉刷成绿色的花费,以此类推。

请计算出粉刷完所有房子最少的花费成本。

 

示例 1:

输入: costs = [[17,2,17],[16,16,5],[14,3,19]]
输出: 10
解释: 将 0 号房子粉刷成蓝色,1 号房子粉刷成绿色,2 号房子粉刷成蓝色
     最少花费: 2 + 5 + 3 = 10。

示例 2:

输入: costs = [[7,6,2]]
输出: 2

 

提示:

  • costs.length == n
  • costs[i].length == 3
  • 1 <= n <= 100
  • 1 <= costs[i][j] <= 20

解法

方法一:动态规划

时间复杂度 $O(n)$,空间复杂度 $O(1)$。其中 $n$ 表示房子的数量。

Python3

class Solution:
    def minCost(self, costs: List[List[int]]) -> int:
        a = b = c = 0
        for ca, cb, cc in costs:
            a, b, c = min(b, c) + ca, min(a, c) + cb, min(a, b) + cc
        return min(a, b, c)

Java

class Solution {
    public int minCost(int[][] costs) {
        int r = 0, g = 0, b = 0;
        for (int[] cost : costs) {
            int _r = r, _g = g, _b = b;
            r = Math.min(_g, _b) + cost[0];
            g = Math.min(_r, _b) + cost[1];
            b = Math.min(_r, _g) + cost[2];
        }
        return Math.min(r, Math.min(g, b));
    }
}

C++

class Solution {
public:
    int minCost(vector<vector<int>>& costs) {
        int r = 0, g = 0, b = 0;
        for (auto& cost : costs) {
            int _r = r, _g = g, _b = b;
            r = min(_g, _b) + cost[0];
            g = min(_r, _b) + cost[1];
            b = min(_r, _g) + cost[2];
        }
        return min(r, min(g, b));
    }
};

Go

func minCost(costs [][]int) int {
	r, g, b := 0, 0, 0
	for _, cost := range costs {
		_r, _g, _b := r, g, b
		r = min(_g, _b) + cost[0]
		g = min(_r, _b) + cost[1]
		b = min(_r, _g) + cost[2]
	}
	return min(r, min(g, b))
}

JavaScript

/**
 * @param {number[][]} costs
 * @return {number}
 */
var minCost = function (costs) {
    let [a, b, c] = [0, 0, 0];
    for (let [ca, cb, cc] of costs) {
        [a, b, c] = [Math.min(b, c) + ca, Math.min(a, c) + cb, Math.min(a, b) + cc];
    }
    return Math.min(a, b, c);
};