Skip to content

Latest commit

 

History

History
763 lines (659 loc) · 17.9 KB

File metadata and controls

763 lines (659 loc) · 17.9 KB
comments difficulty edit_url tags
true
中等
数组
回溯

English Version

题目描述

找出所有相加之和为 n 的 k 个数的组合,且满足下列条件:

  • 只使用数字1到9
  • 每个数字 最多使用一次 

返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。

 

示例 1:

输入: k = 3, n = 7
输出: [[1,2,4]]
解释:
1 + 2 + 4 = 7
没有其他符合的组合了。

示例 2:

输入: k = 3, n = 9
输出: [[1,2,6], [1,3,5], [2,3,4]]
解释:
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
没有其他符合的组合了。

示例 3:

输入: k = 4, n = 1
输出: []
解释: 不存在有效的组合。
在[1,9]范围内使用4个不同的数字,我们可以得到的最小和是1+2+3+4 = 10,因为10 > 1,没有有效的组合。

 

提示:

  • 2 <= k <= 9
  • 1 <= n <= 60

解法

方法一:剪枝 + 回溯(两种方式)

我们设计一个函数 $dfs(i, s)$,表示当前枚举到数字 $i$,还剩下和为 $s$ 的数字需要枚举,当前搜索路径为 $t$,答案为 $ans$

函数 $dfs(i, s)$ 的执行逻辑如下:

方式一:

  • 如果 $s = 0$,且当前搜索路径 $t$ 的长度为 $k$,说明找到了一组答案,将 $t$ 加入 $ans$ 中,然后返回。
  • 如果 $i \gt 9$ 或者 $i \gt s$ 或者当前搜索路径 $t$ 的长度大于 $k$,说明当前搜索路径不可能是答案,直接返回。
  • 否则,我们可以选择将数字 $i$ 加入搜索路径 $t$ 中,然后继续搜索,即执行 $dfs(i + 1, s - i)$,搜索完成后,将 $i$ 从搜索路径 $t$ 中移除;我们也可以选择不将数字 $i$ 加入搜索路径 $t$ 中,直接执行 $dfs(i + 1, s)$

Python3

class Solution:
    def combinationSum3(self, k: int, n: int) -> List[List[int]]:
        def dfs(i: int, s: int):
            if s == 0:
                if len(t) == k:
                    ans.append(t[:])
                return
            if i > 9 or i > s or len(t) >= k:
                return
            t.append(i)
            dfs(i + 1, s - i)
            t.pop()
            dfs(i + 1, s)

        ans = []
        t = []
        dfs(1, n)
        return ans

Java

class Solution {
    private List<List<Integer>> ans = new ArrayList<>();
    private List<Integer> t = new ArrayList<>();
    private int k;

    public List<List<Integer>> combinationSum3(int k, int n) {
        this.k = k;
        dfs(1, n);
        return ans;
    }

    private void dfs(int i, int s) {
        if (s == 0) {
            if (t.size() == k) {
                ans.add(new ArrayList<>(t));
            }
            return;
        }
        if (i > 9 || i > s || t.size() >= k) {
            return;
        }
        t.add(i);
        dfs(i + 1, s - i);
        t.remove(t.size() - 1);
        dfs(i + 1, s);
    }
}

C++

class Solution {
public:
    vector<vector<int>> combinationSum3(int k, int n) {
        vector<vector<int>> ans;
        vector<int> t;
        function<void(int, int)> dfs = [&](int i, int s) {
            if (s == 0) {
                if (t.size() == k) {
                    ans.emplace_back(t);
                }
                return;
            }
            if (i > 9 || i > s || t.size() >= k) {
                return;
            }
            t.emplace_back(i);
            dfs(i + 1, s - i);
            t.pop_back();
            dfs(i + 1, s);
        };
        dfs(1, n);
        return ans;
    }
};

Go

func combinationSum3(k int, n int) (ans [][]int) {
	t := []int{}
	var dfs func(i, s int)
	dfs = func(i, s int) {
		if s == 0 {
			if len(t) == k {
				ans = append(ans, slices.Clone(t))
			}
			return
		}
		if i > 9 || i > s || len(t) >= k {
			return
		}
		t = append(t, i)
		dfs(i+1, s-i)
		t = t[:len(t)-1]
		dfs(i+1, s)
	}
	dfs(1, n)
	return
}

TypeScript

function combinationSum3(k: number, n: number): number[][] {
    const ans: number[][] = [];
    const t: number[] = [];
    const dfs = (i: number, s: number) => {
        if (s === 0) {
            if (t.length === k) {
                ans.push(t.slice());
            }
            return;
        }
        if (i > 9 || i > s || t.length >= k) {
            return;
        }
        t.push(i);
        dfs(i + 1, s - i);
        t.pop();
        dfs(i + 1, s);
    };
    dfs(1, n);
    return ans;
}

JavaScript

function combinationSum3(k, n) {
    const ans = [];
    const t = [];
    const dfs = (i, s) => {
        if (s === 0) {
            if (t.length === k) {
                ans.push(t.slice());
            }
            return;
        }
        if (i > 9 || i > s || t.length >= k) {
            return;
        }
        t.push(i);
        dfs(i + 1, s - i);
        t.pop();
        dfs(i + 1, s);
    };
    dfs(1, n);
    return ans;
}

Rust

impl Solution {
    #[allow(dead_code)]
    pub fn combination_sum3(k: i32, n: i32) -> Vec<Vec<i32>> {
        let mut ret = Vec::new();
        let mut candidates = (1..=9).collect();
        let mut cur_vec = Vec::new();
        Self::dfs(n, k, 0, 0, &mut cur_vec, &mut candidates, &mut ret);
        ret
    }

    #[allow(dead_code)]
    fn dfs(
        target: i32,
        length: i32,
        cur_index: usize,
        cur_sum: i32,
        cur_vec: &mut Vec<i32>,
        candidates: &Vec<i32>,
        ans: &mut Vec<Vec<i32>>,
    ) {
        if cur_sum > target || cur_vec.len() > (length as usize) {
            // No answer for this
            return;
        }
        if cur_sum == target && cur_vec.len() == (length as usize) {
            // We get an answer
            ans.push(cur_vec.clone());
            return;
        }
        for i in cur_index..candidates.len() {
            cur_vec.push(candidates[i]);
            Self::dfs(
                target,
                length,
                i + 1,
                cur_sum + candidates[i],
                cur_vec,
                candidates,
                ans,
            );
            cur_vec.pop().unwrap();
        }
    }
}

C#

public class Solution {
    private List<IList<int>> ans = new List<IList<int>>();
    private List<int> t = new List<int>();
    private int k;

    public IList<IList<int>> CombinationSum3(int k, int n) {
        this.k = k;
        dfs(1, n);
        return ans;
    }

    private void dfs(int i, int s) {
        if (s == 0) {
            if (t.Count == k) {
                ans.Add(new List<int>(t));
            }
            return;
        }
        if (i > 9 || i > s || t.Count >= k) {
            return;
        }
        t.Add(i);
        dfs(i + 1, s - i);
        t.RemoveAt(t.Count - 1);
        dfs(i + 1, s);
    }
}

方式二:

  • 如果 $s = 0$,且当前搜索路径 $t$ 的长度为 $k$,说明找到了一组答案,将 $t$ 加入 $ans$ 中,然后返回。
  • 如果 $i \gt 9$ 或者 $i \gt s$ 或者当前搜索路径 $t$ 的长度大于 $k$,说明当前搜索路径不可能是答案,直接返回。
  • 否则,我们枚举下一个数字 $j$,即 $j \in [i, 9]$,将数字 $j$ 加入搜索路径 $t$ 中,然后继续搜索,即执行 $dfs(j + 1, s - j)$,搜索完成后,将 $j$ 从搜索路径 $t$ 中移除。

在主函数中,我们调用 $dfs(1, n)$,即从数字 $1$ 开始枚举,剩下和为 $n$ 的数字需要枚举。搜索完成后,即可得到所有的答案。

时间复杂度 $(C_{9}^k \times k)$,空间复杂度 $O(k)$

Python3

class Solution:
    def combinationSum3(self, k: int, n: int) -> List[List[int]]:
        def dfs(i: int, s: int):
            if s == 0:
                if len(t) == k:
                    ans.append(t[:])
                return
            if i > 9 or i > s or len(t) >= k:
                return
            for j in range(i, 10):
                t.append(j)
                dfs(j + 1, s - j)
                t.pop()

        ans = []
        t = []
        dfs(1, n)
        return ans

Java

class Solution {
    private List<List<Integer>> ans = new ArrayList<>();
    private List<Integer> t = new ArrayList<>();
    private int k;

    public List<List<Integer>> combinationSum3(int k, int n) {
        this.k = k;
        dfs(1, n);
        return ans;
    }

    private void dfs(int i, int s) {
        if (s == 0) {
            if (t.size() == k) {
                ans.add(new ArrayList<>(t));
            }
            return;
        }
        if (i > 9 || i > s || t.size() >= k) {
            return;
        }
        for (int j = i; j <= 9; ++j) {
            t.add(j);
            dfs(j + 1, s - j);
            t.remove(t.size() - 1);
        }
    }
}

C++

class Solution {
public:
    vector<vector<int>> combinationSum3(int k, int n) {
        vector<vector<int>> ans;
        vector<int> t;
        function<void(int, int)> dfs = [&](int i, int s) {
            if (s == 0) {
                if (t.size() == k) {
                    ans.emplace_back(t);
                }
                return;
            }
            if (i > 9 || i > s || t.size() >= k) {
                return;
            }
            for (int j = i; j <= 9; ++j) {
                t.emplace_back(j);
                dfs(j + 1, s - j);
                t.pop_back();
            }
        };
        dfs(1, n);
        return ans;
    }
};

Go

func combinationSum3(k int, n int) (ans [][]int) {
	t := []int{}
	var dfs func(i, s int)
	dfs = func(i, s int) {
		if s == 0 {
			if len(t) == k {
				ans = append(ans, slices.Clone(t))
			}
			return
		}
		if i > 9 || i > s || len(t) >= k {
			return
		}
		for j := i; j <= 9; j++ {
			t = append(t, j)
			dfs(j+1, s-j)
			t = t[:len(t)-1]
		}
	}
	dfs(1, n)
	return
}

TypeScript

function combinationSum3(k: number, n: number): number[][] {
    const ans: number[][] = [];
    const t: number[] = [];
    const dfs = (i: number, s: number) => {
        if (s === 0) {
            if (t.length === k) {
                ans.push(t.slice());
            }
            return;
        }
        if (i > 9 || i > s || t.length >= k) {
            return;
        }
        for (let j = i; j <= 9; ++j) {
            t.push(j);
            dfs(j + 1, s - j);
            t.pop();
        }
    };
    dfs(1, n);
    return ans;
}

JavaScript

function combinationSum3(k, n) {
    const ans = [];
    const t = [];
    const dfs = (i, s) => {
        if (s === 0) {
            if (t.length === k) {
                ans.push(t.slice());
            }
            return;
        }
        if (i > 9 || i > s || t.length >= k) {
            return;
        }
        for (let j = i; j <= 9; ++j) {
            t.push(j);
            dfs(j + 1, s - j);
            t.pop();
        }
    };
    dfs(1, n);
    return ans;
}

C#

public class Solution {
    private List<IList<int>> ans = new List<IList<int>>();
    private List<int> t = new List<int>();
    private int k;

    public IList<IList<int>> CombinationSum3(int k, int n) {
        this.k = k;
        dfs(1, n);
        return ans;
    }

    private void dfs(int i, int s) {
        if (s == 0) {
            if (t.Count == k) {
                ans.Add(new List<int>(t));
            }
            return;
        }
        if (i > 9 || i > s || t.Count >= k) {
            return;
        }
        for (int j = i; j <= 9; ++j) {
            t.Add(j);
            dfs(j + 1, s - j);
            t.RemoveAt(t.Count - 1);
        }
    }
}

方法二:二进制枚举

我们可以用一个长度为 $9$ 的二进制整数表示数字 $1$$9$ 的选取情况,其中二进制整数的第 $i$ 位表示数字 $i + 1$ 是否被选取,如果第 $i$ 位为 $1$,则表示数字 $i + 1$ 被选取,否则表示数字 $i + 1$ 没有被选取。

我们在 $[0, 2^9)$ 范围内枚举二进制整数,对于当前枚举到的二进制整数 $mask$,如果 $mask$ 的二进制表示中 $1$ 的个数为 $k$,且 $mask$ 的二进制表示中 $1$ 所对应的数字之和为 $n$,则说明 $mask$ 对应的数字选取方案是一组答案。我们将 $mask$ 对应的数字选取方案加入答案即可。

时间复杂度 $O(2^9 \times 9)$,空间复杂度 $O(k)$

相似题目:

Python3

class Solution:
    def combinationSum3(self, k: int, n: int) -> List[List[int]]:
        ans = []
        for mask in range(1 << 9):
            if mask.bit_count() == k:
                t = [i + 1 for i in range(9) if mask >> i & 1]
                if sum(t) == n:
                    ans.append(t)
        return ans

Java

class Solution {
    public List<List<Integer>> combinationSum3(int k, int n) {
        List<List<Integer>> ans = new ArrayList<>();
        for (int mask = 0; mask < 1 << 9; ++mask) {
            if (Integer.bitCount(mask) == k) {
                List<Integer> t = new ArrayList<>();
                int s = 0;
                for (int i = 0; i < 9; ++i) {
                    if ((mask >> i & 1) == 1) {
                        s += (i + 1);
                        t.add(i + 1);
                    }
                }
                if (s == n) {
                    ans.add(t);
                }
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    vector<vector<int>> combinationSum3(int k, int n) {
        vector<vector<int>> ans;
        for (int mask = 0; mask < 1 << 9; ++mask) {
            if (__builtin_popcount(mask) == k) {
                int s = 0;
                vector<int> t;
                for (int i = 0; i < 9; ++i) {
                    if (mask >> i & 1) {
                        t.push_back(i + 1);
                        s += i + 1;
                    }
                }
                if (s == n) {
                    ans.emplace_back(t);
                }
            }
        }
        return ans;
    }
};

Go

func combinationSum3(k int, n int) (ans [][]int) {
	for mask := 0; mask < 1<<9; mask++ {
		if bits.OnesCount(uint(mask)) == k {
			t := []int{}
			s := 0
			for i := 0; i < 9; i++ {
				if mask>>i&1 == 1 {
					s += i + 1
					t = append(t, i+1)
				}
			}
			if s == n {
				ans = append(ans, t)
			}
		}
	}
	return
}

TypeScript

function combinationSum3(k: number, n: number): number[][] {
    const ans: number[][] = [];
    for (let mask = 0; mask < 1 << 9; ++mask) {
        if (bitCount(mask) === k) {
            const t: number[] = [];
            let s = 0;
            for (let i = 0; i < 9; ++i) {
                if (mask & (1 << i)) {
                    t.push(i + 1);
                    s += i + 1;
                }
            }
            if (s === n) {
                ans.push(t);
            }
        }
    }
    return ans;
}

function bitCount(i: number): number {
    i = i - ((i >>> 1) & 0x55555555);
    i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
    i = (i + (i >>> 4)) & 0x0f0f0f0f;
    i = i + (i >>> 8);
    i = i + (i >>> 16);
    return i & 0x3f;
}

JavaScript

function combinationSum3(k, n) {
    const ans = [];
    for (let mask = 0; mask < 1 << 9; ++mask) {
        if (bitCount(mask) === k) {
            const t = [];
            let s = 0;
            for (let i = 0; i < 9; ++i) {
                if (mask & (1 << i)) {
                    t.push(i + 1);
                    s += i + 1;
                }
            }
            if (s === n) {
                ans.push(t);
            }
        }
    }
    return ans;
}

function bitCount(i) {
    i = i - ((i >>> 1) & 0x55555555);
    i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
    i = (i + (i >>> 4)) & 0x0f0f0f0f;
    i = i + (i >>> 8);
    i = i + (i >>> 16);
    return i & 0x3f;
}

C#

public class Solution {
    public IList<IList<int>> CombinationSum3(int k, int n) {
        List<IList<int>> ans = new List<IList<int>>();
        for (int mask = 0; mask < 1 << 9; ++mask) {
            if (bitCount(mask) == k) {
                List<int> t = new List<int>();
                int s = 0;
                for (int i = 0; i < 9; ++i) {
                    if ((mask >> i & 1) == 1) {
                        s += i + 1;
                        t.Add(i + 1);
                    }
                }
                if (s == n) {
                    ans.Add(t);
                }
            }
        }
        return ans;
    }

    private int bitCount(int x) {
        int cnt = 0;
        while (x > 0) {
            x -= x & -x;
            ++cnt;
        }
        return cnt;
    }
}