Skip to content

Latest commit

 

History

History
303 lines (242 loc) · 9.67 KB

File metadata and controls

303 lines (242 loc) · 9.67 KB
comments difficulty edit_url tags
true
简单
哈希表
链表
双指针

English Version

题目描述

给你两个单链表的头节点 headAheadB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null

图示两个链表在节点 c1 开始相交

题目数据 保证 整个链式结构中不存在环。

注意,函数返回结果后,链表必须 保持其原始结构

自定义评测:

评测系统 的输入如下(你设计的程序 不适用 此输入):

  • intersectVal - 相交的起始节点的值。如果不存在相交节点,这一值为 0
  • listA - 第一个链表
  • listB - 第二个链表
  • skipA - 在 listA 中(从头节点开始)跳到交叉节点的节点数
  • skipB - 在 listB 中(从头节点开始)跳到交叉节点的节点数

评测系统将根据这些输入创建链式数据结构,并将两个头节点 headAheadB 传递给你的程序。如果程序能够正确返回相交节点,那么你的解决方案将被 视作正确答案

 

示例 1:

输入:intersectVal = 8, listA = [4,1,8,4,5], listB = [5,6,1,8,4,5], skipA = 2, skipB = 3
输出:Intersected at '8'
解释:相交节点的值为 8 (注意,如果两个链表相交则不能为 0)。
从各自的表头开始算起,链表 A 为 [4,1,8,4,5],链表 B 为 [5,6,1,8,4,5]。
在 A 中,相交节点前有 2 个节点;在 B 中,相交节点前有 3 个节点。
— 请注意相交节点的值不为 1,因为在链表 A 和链表 B 之中值为 1 的节点 (A 中第二个节点和 B 中第三个节点) 是不同的节点。换句话说,它们在内存中指向两个不同的位置,而链表 A 和链表 B 中值为 8 的节点 (A 中第三个节点,B 中第四个节点) 在内存中指向相同的位置。

 

示例 2:

输入:intersectVal = 2, listA = [1,9,1,2,4], listB = [3,2,4], skipA = 3, skipB = 1
输出:Intersected at '2'
解释:相交节点的值为 2 (注意,如果两个链表相交则不能为 0)。
从各自的表头开始算起,链表 A 为 [1,9,1,2,4],链表 B 为 [3,2,4]。
在 A 中,相交节点前有 3 个节点;在 B 中,相交节点前有 1 个节点。

示例 3:

输入:intersectVal = 0, listA = [2,6,4], listB = [1,5], skipA = 3, skipB = 2
输出:No intersection
解释:从各自的表头开始算起,链表 A 为 [2,6,4],链表 B 为 [1,5]。
由于这两个链表不相交,所以 intersectVal 必须为 0,而 skipA 和 skipB 可以是任意值。
这两个链表不相交,因此返回 null 。

 

提示:

  • listA 中节点数目为 m
  • listB 中节点数目为 n
  • 1 <= m, n <= 3 * 104
  • 1 <= Node.val <= 105
  • 0 <= skipA <= m
  • 0 <= skipB <= n
  • 如果 listAlistB 没有交点,intersectVal0
  • 如果 listAlistB 有交点,intersectVal == listA[skipA] == listB[skipB]

 

进阶:你能否设计一个时间复杂度 O(m + n) 、仅用 O(1) 内存的解决方案?

解法

方法一:双指针

我们使用两个指针 $a$, $b$ 分别指向两个链表 $\textit{headA}$, $\textit{headB}$

同时遍历链表,当 $a$ 到达链表 $\textit{headA}$ 的末尾时,重新定位到链表 $\textit{headB}$ 的头节点;当 $b$ 到达链表 $\textit{headB}$ 的末尾时,重新定位到链表 $\textit{headA}$ 的头节点。

若两指针相遇,所指向的结点就是第一个公共节点。若没相遇,说明两链表无公共节点,此时两个指针都指向 null,返回其中一个即可。

时间复杂度 $O(m + n)$,其中 $m$$n$ 分别是链表 $\textit{headA}$$\textit{headB}$ 的长度。空间复杂度 $O(1)$

Python3

# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, x):
#         self.val = x
#         self.next = None


class Solution:
    def getIntersectionNode(self, headA: ListNode, headB: ListNode) -> ListNode:
        a, b = headA, headB
        while a != b:
            a = a.next if a else headB
            b = b.next if b else headA
        return a

Java

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) {
 *         val = x;
 *         next = null;
 *     }
 * }
 */
public class Solution {
    public ListNode getIntersectionNode(ListNode headA, ListNode headB) {
        ListNode a = headA, b = headB;
        while (a != b) {
            a = a == null ? headB : a.next;
            b = b == null ? headA : b.next;
        }
        return a;
    }
}

C++

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    ListNode* getIntersectionNode(ListNode* headA, ListNode* headB) {
        ListNode *a = headA, *b = headB;
        while (a != b) {
            a = a ? a->next : headB;
            b = b ? b->next : headA;
        }
        return a;
    }
};

Go

/**
 * Definition for singly-linked list.
 * type ListNode struct {
 *     Val int
 *     Next *ListNode
 * }
 */
func getIntersectionNode(headA, headB *ListNode) *ListNode {
	a, b := headA, headB
	for a != b {
		if a == nil {
			a = headB
		} else {
			a = a.Next
		}
		if b == nil {
			b = headA
		} else {
			b = b.Next
		}
	}
	return a
}

TypeScript

/**
 * Definition for singly-linked list.
 * class ListNode {
 *     val: number
 *     next: ListNode | null
 *     constructor(val?: number, next?: ListNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.next = (next===undefined ? null : next)
 *     }
 * }
 */

function getIntersectionNode(headA: ListNode | null, headB: ListNode | null): ListNode | null {
    let [a, b] = [headA, headB];
    while (a !== b) {
        a = a ? a.next : headB;
        b = b ? b.next : headA;
    }
    return a;
}

JavaScript

/**
 * Definition for singly-linked list.
 * function ListNode(val) {
 *     this.val = val;
 *     this.next = null;
 * }
 */

/**
 * @param {ListNode} headA
 * @param {ListNode} headB
 * @return {ListNode}
 */
var getIntersectionNode = function (headA, headB) {
    let [a, b] = [headA, headB];
    while (a !== b) {
        a = a ? a.next : headB;
        b = b ? b.next : headA;
    }
    return a;
};

Swift

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     public var val: Int
 *     public var next: ListNode?
 *     public init(_ val: Int) {
 *         self.val = val
 *         self.next = nil
 *     }
 * }
 */

class Solution {
    func getIntersectionNode(_ headA: ListNode?, _ headB: ListNode?) -> ListNode? {
        var a = headA
        var b = headB
        while a !== b {
            a = a == nil ? headB : a?.next
            b = b == nil ? headA : b?.next
        }
        return a
    }
}